These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 10841417)
21. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source. Hashimoto Y; Hiraga F; Kiyanagi Y Appl Radiat Isot; 2015 Dec; 106():88-91. PubMed ID: 26272165 [TBL] [Abstract][Full Text] [Related]
22. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Lee PY; Liu YH; Jiang SH Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y Phys Med Biol; 2004 Mar; 49(5):819-31. PubMed ID: 15070205 [TBL] [Abstract][Full Text] [Related]
24. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Med Phys; 2006 Jun; 33(6):1688-94. PubMed ID: 16872076 [TBL] [Abstract][Full Text] [Related]
25. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy. Sakamoto S; Kiger WS; Harling OK Med Phys; 1999 Sep; 26(9):1979-88. PubMed ID: 10505888 [TBL] [Abstract][Full Text] [Related]
26. A practical target system for accelerator-based BNCT which may effectively double the dose rate. Randers-Pehrson G; Brenner DJ Med Phys; 1998 Jun; 25(6):894-6. PubMed ID: 9650178 [TBL] [Abstract][Full Text] [Related]
27. Accelerator driven neutron source design via beryllium target and Khorshidi A J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209 [TBL] [Abstract][Full Text] [Related]
28. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction. Kim KO; Kim JK; Kim SY Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311 [TBL] [Abstract][Full Text] [Related]
29. Measurement of the 9Be(p,n) thick target spectrum for use in accelerator-based boron neutron capture therapy. Howard WB; Yanch JC; Grimes SM; Massey TN; al-Quraishi SI; Jacobs DK; Brient CE Med Phys; 1996 Jul; 23(7):1233-5. PubMed ID: 8839418 [No Abstract] [Full Text] [Related]
30. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy. Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968 [TBL] [Abstract][Full Text] [Related]
31. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control. Lee PY; Liu YH; Jiang SH Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900 [TBL] [Abstract][Full Text] [Related]
32. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
33. Characteristics of boron-dose enhancer dependent on dose protocol and 10B concentration for BNCT using near-threshold 7Li(p,n)7Be direct neutrons. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Phys Med Biol; 2005 Jan; 50(1):167-77. PubMed ID: 15715430 [TBL] [Abstract][Full Text] [Related]
34. A method for fast evaluation of neutron spectra for BNCT based on in-phantom figure-of-merit calculation. Martín G Med Phys; 2003 Mar; 30(3):381-6. PubMed ID: 12674238 [TBL] [Abstract][Full Text] [Related]
36. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams. Koivunoro H; Bleuel DL; Nastasi U; Lou TP; Reijonen J; Leung KN Appl Radiat Isot; 2004 Nov; 61(5):853-9. PubMed ID: 15308157 [TBL] [Abstract][Full Text] [Related]
37. Shielding design and dose assessment for accelerator based neutron capture therapy. Howard WB; Yanch JC Health Phys; 1995 May; 68(5):723-30. PubMed ID: 7730072 [TBL] [Abstract][Full Text] [Related]
38. Toward a final design for the Birmingham boron neutron capture therapy neutron beam. Allen DA; Beynon TD; Green S; James ND Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401 [TBL] [Abstract][Full Text] [Related]
39. An improved neutron collimator for brain tumor irradiations in clinical boron neutron capture therapy. Liu HB; Greenberg DD; Capala J; Wheeler FJ Med Phys; 1996 Dec; 23(12):2051-60. PubMed ID: 8994170 [TBL] [Abstract][Full Text] [Related]
40. Overview of the IBA accelerator-based BNCT system. Forton E; Stichelbaut F; Cambriani A; Kleeven W; Ahlback J; Jongen Y Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S262-5. PubMed ID: 19376728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]