These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10841420)

  • 1. Theoretical study of temperature elevation at muscle/bone interface during ultrasound hyperthermia.
    Lin WL; Liauh CT; Chen YY; Liu HC; Shieh MJ
    Med Phys; 2000 May; 27(5):1131-40. PubMed ID: 10841420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of the temperature field for inverse ultrasound hyperthermia calculations at a muscle/bone interface.
    Liauh CT; Shih TC; Huang HW; Lin WL
    Med Phys; 2004 Feb; 31(2):208-17. PubMed ID: 15000606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the cause of the temperature rise at the muscle-bone interface during ultrasound hyperthermia.
    Fujii M; Sakamoto K; Toda Y; Negishi A; Kanai H
    IEEE Trans Biomed Eng; 1999 May; 46(5):494-504. PubMed ID: 10230128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of convergent ultrasound hyperthermia for treating bone tumors.
    Lu BY; Yang RS; Lin WL; Cheng KS; Wang CY; Kuo TS
    Med Eng Phys; 2000 May; 22(4):253-63. PubMed ID: 11018457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific absorption rate ratio patterns of cylindrical ultrasound transducers for breast tumors.
    Lin WL; Yen JY; Chen YY; Cheng KS; Shieh MJ
    Med Phys; 1998 Jun; 25(6):1041-8. PubMed ID: 9650195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatable domain and optimal frequency for brain tumors during ultrasound hyperthermia.
    Lin WL; Liauh CT; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):239-47. PubMed ID: 10656398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia.
    Lin WL; Chen YY; Lin SY; Yen JY; Shieh MJ; Kuo TS
    Med Phys; 1999 Sep; 26(9):2007-16. PubMed ID: 10505892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of hyperthermia by ultrasound.
    Hahn GM; Marmor JB; Pounds D
    Bull Cancer; 1981; 68(3):249-54. PubMed ID: 7337840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of temperature responses to diffused ultrasound focal fields produced by a sector-vortex phased array.
    Umemura SI; Cain CA
    Int J Hyperthermia; 1990; 6(3):641-54. PubMed ID: 2376675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of bidirectional ultrasound hyperthermia treatments of neck tumours.
    Tu SJ; Hynynen K; Roemer RB
    Int J Hyperthermia; 1994; 10(5):707-22. PubMed ID: 7806926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.
    López-Haro SA; Gutiérrez MI; Vera A; Leija L
    J Med Ultrason (2001); 2015 Oct; 42(4):489-98. PubMed ID: 26576973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches for modelling interstitial ultrasound ablation of tumours within or adjacent to bone: theoretical and experimental evaluations.
    Scott SJ; Prakash P; Salgaonkar V; Jones PD; Cam RN; Han M; Rieke V; Burdette EC; Diederich CJ
    Int J Hyperthermia; 2013 Nov; 29(7):629-42. PubMed ID: 24102393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Basic investigation on hyperthermia by low-frequency ultrasonic].
    Shiina T; Saito M
    Iyodenshi To Seitai Kogaku; 1989 Jun; 27(2):107-11. PubMed ID: 2810880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia.
    Hynynen K; DeYoung D
    Int J Hyperthermia; 1988; 4(3):267-79. PubMed ID: 3290347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of linear arrays for interstitial ultrasound thermal therapy.
    Chopra R; Bronskill MJ; Foster FS
    Med Phys; 2000 Jun; 27(6):1281-6. PubMed ID: 10902557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.