BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10841421)

  • 1. Magnetic resonance imaging of thermal coagulation effects in a phantom for calibrating thermal therapy devices.
    Bouchard LS; Bronskill MJ
    Med Phys; 2000 May; 27(5):1141-5. PubMed ID: 10841421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study.
    Vitkin IA; Moriarty JA; Peters RD; Kolios MC; Gladman AS; Chen JC; Hinks RS; Hunt JW; Wilson BC; Easty AC; Bronskill MJ; Kucharczyk W; Sherar MD; Henkelman RM
    Med Phys; 1997 Feb; 24(2):269-77. PubMed ID: 9048368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modality tissue-mimicking phantom for thermal therapy.
    McDonald M; Lochhead S; Chopra R; Bronskill MJ
    Phys Med Biol; 2004 Jul; 49(13):2767-78. PubMed ID: 15285246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave thermal imaging of scanned focused ultrasound heating: phantom results.
    Meaney PM; Zhou T; Fanning MW; Geimer SD; Paulsen KD
    Int J Hyperthermia; 2008 Nov; 24(7):523-36. PubMed ID: 18608588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for determining the coagulation threshold temperature of transparent tissue-mimicking thermal therapy gel phantoms: Validated by magnetic resonance imaging thermometry.
    Brodin NP; Partanen A; Asp P; Branch CA; Guha C; Tomé WA
    Med Phys; 2016 Mar; 43(3):1167-74. PubMed ID: 26936702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation.
    Negussie AH; Partanen A; Mikhail AS; Xu S; Abi-Jaoudeh N; Maruvada S; Wood BJ
    Int J Hyperthermia; 2016 May; 32(3):239-43. PubMed ID: 27099078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application.
    Dabbagh A; Abdullah BJ; Abu Kasim NH; Ramasindarum C
    Int J Hyperthermia; 2014 Feb; 30(1):66-74. PubMed ID: 24286257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive microwave multifrequency radiometry used in microwave hyperthermia for bidimensional reconstruction of temperature patterns.
    Dubois L; Pribetich J; Fabre JJ; Chive M; Moschetto Y
    Int J Hyperthermia; 1993; 9(3):415-31. PubMed ID: 8515144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.
    Maswadi SM; Dodd SJ; Gao JH; Glickman RD
    J Biomed Opt; 2004; 9(4):711-8. PubMed ID: 15250757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material.
    Davidson SR; Sherar MD
    Int J Hyperthermia; 2003; 19(5):551-62. PubMed ID: 12944169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A liver-mimicking MRI phantom for thermal ablation experiments.
    Bazrafshan B; Hübner F; Farshid P; Larson MC; Vogel V; Mäntele W; Vogl TJ
    Med Phys; 2011 May; 38(5):2674-84. PubMed ID: 21776804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational feasibility of deformable mirror microwave hyperthermia technique for localized breast tumors.
    Arunachalam K; Udpa SS; Udpa L
    Int J Hyperthermia; 2007 Nov; 23(7):577-89. PubMed ID: 18038288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.