BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 10841536)

  • 1. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins.
    Lombardi A; Summa CM; Geremia S; Randaccio L; Pavone V; DeGrado WF
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6298-305. PubMed ID: 10841536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography.
    Geremia S; Di Costanzo L; Randaccio L; Engel DE; Lombardi A; Nastri F; DeGrado WF
    J Am Chem Soc; 2005 Dec; 127(49):17266-76. PubMed ID: 16332076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational de novo design, and characterization of an A(2)B(2) diiron protein.
    Summa CM; Rosenblatt MM; Hong JK; Lear JD; DeGrado WF
    J Mol Biol; 2002 Aug; 321(5):923-38. PubMed ID: 12206771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the de novo design of a catalytically active helix bundle: a substrate-accessible carboxylate-bridged dinuclear metal center.
    Di Costanzo L; Wade H; Geremia S; Randaccio L; Pavone V; DeGrado WF; Lombardi A
    J Am Chem Soc; 2001 Dec; 123(51):12749-57. PubMed ID: 11749531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tertiary templates for the design of diiron proteins.
    Summa CM; Lombardi A; Lewis M; DeGrado WF
    Curr Opin Struct Biol; 1999 Aug; 9(4):500-8. PubMed ID: 10449377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial diiron proteins: from structure to function.
    Calhoun JR; Nastri F; Maglio O; Pavone V; Lombardi A; DeGrado WF
    Biopolymers; 2005; 80(2-3):264-78. PubMed ID: 15700297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of new models for diiron biosites.
    Trukhan VM; Gritsenko ON; Nordlander E; Shteinman AA
    J Inorg Biochem; 2000 Apr; 79(1-4):41-6. PubMed ID: 10830845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational design and characterization of a monomeric helical dinuclear metalloprotein.
    Calhoun JR; Kono H; Lahr S; Wang W; DeGrado WF; Saven JG
    J Mol Biol; 2003 Dec; 334(5):1101-15. PubMed ID: 14643669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
    Plegaria JS; Pecoraro VL
    Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse.
    Strand KR; Karlsen S; Kolberg M; Røhr AK; Görbitz CH; Andersson KK
    J Biol Chem; 2004 Nov; 279(45):46794-801. PubMed ID: 15322079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase?
    Gomes CM; Le Gall J; Xavier AV; Teixeira M
    Chembiochem; 2001 Aug; 2(7-8):583-7. PubMed ID: 11828492
    [No Abstract]   [Full Text] [Related]  

  • 15. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins.
    Fox BG; Shanklin J; Ai J; Loehr TM; Sanders-Loehr J
    Biochemistry; 1994 Nov; 33(43):12776-86. PubMed ID: 7947683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Design of Tetranuclear Transition Metal Clusters Stabilized by Hydrogen-Bonded Networks in Helical Bundles.
    Zhang SQ; Chino M; Liu L; Tang Y; Hu X; DeGrado WF; Lombardi A
    J Am Chem Soc; 2018 Jan; 140(4):1294-1304. PubMed ID: 29249157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the Escherichia coli ribonucleotide reductase protein R2.
    Nordlund P; Eklund H
    J Mol Biol; 1993 Jul; 232(1):123-64. PubMed ID: 8331655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.
    Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ
    Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.