These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10842007)

  • 21. Processing of form and motion in area 21a of cat visual cortex.
    Dreher B; Michalski A; Ho RH; Lee CW; Burke W
    Vis Neurosci; 1993; 10(1):93-115. PubMed ID: 8424929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral receptive field properties of neurons in the feline superior colliculus.
    Waleszczyk WJ; Nagy A; Wypych M; Berényi A; Paróczy Z; Eördegh G; Ghazaryan A; Benedek G
    Exp Brain Res; 2007 Jul; 181(1):87-98. PubMed ID: 17431601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and temporal selectivity in the suprasylvian visual cortex of the cat.
    Zumbroich TJ; Blakemore C
    J Neurosci; 1987 Feb; 7(2):482-500. PubMed ID: 3819821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
    Smith EL; Chino YM; Ni J; Ridder WH; Crawford ML
    J Neurophysiol; 1997 Jul; 78(1):351-65. PubMed ID: 9242285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of suppression in receptive fields of neurons in cat visual cortex.
    DeAngelis GC; Robson JG; Ohzawa I; Freeman RD
    J Neurophysiol; 1992 Jul; 68(1):144-63. PubMed ID: 1517820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal receptive field properties of cells in the rat superior colliculus.
    Prévost F; Lepore F; Guillemot JP
    Brain Res; 2007 Apr; 1142():80-91. PubMed ID: 17303094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat.
    Dreher B; Michalski A; Cleland BG; Burke W
    Vis Neurosci; 1992 Jul; 9(1):65-78. PubMed ID: 1633128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurons in cat V1 show significant clustering by degree of tuning.
    Ziskind AJ; Emondi AA; Kurgansky AV; Rebrik SP; Miller KD
    J Neurophysiol; 2015 Apr; 113(7):2555-81. PubMed ID: 25652921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1118-35. PubMed ID: 8492152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity.
    Wimborne BM; Henry GH
    J Physiol; 1992 Apr; 449():457-78. PubMed ID: 1522518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat.
    Pollen DA; Ronner SF
    J Physiol; 1975 Mar; 245(3):667-97. PubMed ID: 1142223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Length and width tuning of neurons in the cat's primary visual cortex.
    DeAngelis GC; Freeman RD; Ohzawa I
    J Neurophysiol; 1994 Jan; 71(1):347-74. PubMed ID: 8158236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in spatial and temporal frequency interactions between central and peripheral parts of the feline area 18.
    Zhao C; Hata R; Okamura JY; Wang G
    Eur J Neurosci; 2016 Oct; 44(8):2635-2645. PubMed ID: 27529598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret.
    Baker GE; Thompson ID; Krug K; Smyth D; Tolhurst DJ
    Eur J Neurosci; 1998 Aug; 10(8):2657-68. PubMed ID: 9767395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Center-surround interactions in the middle temporal visual area of the owl monkey.
    Born RT
    J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.