BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10842071)

  • 1. Developmental regulation of the gradient of cftr expression in the rabbit heart.
    Wong KR; Trezise AE; Vandenberg JI
    Mech Dev; 2000 Jun; 94(1-2):195-7. PubMed ID: 10842071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of the normal epicardial to endocardial gradient of cftr mRNA expression in the hypertrophied rabbit left ventricle.
    Wong KR; Trezise AE; Crozatier B; Vandenberg JI
    Biochem Biophys Res Commun; 2000 Nov; 278(1):144-9. PubMed ID: 11071866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and functional distributions of chloride conductances in rabbit ventricle.
    Wong KR; Trezise AE; Bryant S; Hart G; Vandenberg JI
    Am J Physiol; 1999 Oct; 277(4):H1403-9. PubMed ID: 10516175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR chloride channels in human and simian heart.
    Warth JD; Collier ML; Hart P; Geary Y; Gelband CH; Chapman T; Horowitz B; Hume JR
    Cardiovasc Res; 1996 Apr; 31(4):615-24. PubMed ID: 8689654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.
    Al-Nakkash L; Reinach PS
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2364-70. PubMed ID: 11527951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart.
    Hart P; Warth JD; Levesque PC; Collier ML; Geary Y; Horowitz B; Hume JR
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6343-8. PubMed ID: 8692817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes.
    Gao Z; Sun HY; Lau CP; Chin-Wan Fung P; Li GR
    J Mol Cell Cardiol; 2007 Jan; 42(1):98-105. PubMed ID: 17112538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts.
    Pan P; Guo Y; Gu J
    Neurosci Lett; 2008 Aug; 441(1):35-8. PubMed ID: 18584958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of cAMP-activated chloride current and CFTR mRNA in the guinea pig heart.
    James AF; Tominaga T; Okada Y; Tominaga M
    Circ Res; 1996 Aug; 79(2):201-7. PubMed ID: 8755996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.
    Mohamed A; Ferguson D; Seibert FS; Cai HM; Kartner N; Grinstein S; Riordan JR; Lukacs GL
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):259-65. PubMed ID: 9078271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator and the outwardly rectifying chloride channel: a relationship between two chloride channels expressed in epithelial cells.
    Hryciw DH; Guggino WB
    Clin Exp Pharmacol Physiol; 2000 Nov; 27(11):892-5. PubMed ID: 11071305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart.
    Chen H; Liu LL; Ye LL; McGuckin C; Tamowski S; Scowen P; Tian H; Murray K; Hatton WJ; Duan D
    Circulation; 2004 Aug; 110(6):700-4. PubMed ID: 15289377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional regulation of the cystic fibrosis gene in cardiac development and hypertrophy.
    Davies WL; Vandenberg JI; Sayeed RA; Trezise AE
    Biochem Biophys Res Commun; 2004 Jun; 319(2):410-8. PubMed ID: 15178422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of cystic fibrosis transmembrane regulator Cl- channels in heart.
    Levesque PC; Hart PJ; Hume JR; Kenyon JL; Horowitz B
    Circ Res; 1992 Oct; 71(4):1002-7. PubMed ID: 1381291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells.
    Dray-Charier N; Paul A; Veissiere D; Mergey M; Scoazec JY; Capeau J; Brahimi-Horn C; Housset C
    Lab Invest; 1995 Dec; 73(6):828-36. PubMed ID: 8558844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.