BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10842169)

  • 1. Rap1p-binding sites in the saccharomyces cerevisiae GPD1 promoter are involved in its response to NaCl.
    Eriksson P; Alipour H; Adler L; Blomberg A
    J Biol Chem; 2000 Sep; 275(38):29368-76. PubMed ID: 10842169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1.
    Eriksson P; André L; Ansell R; Blomberg A; Adler L
    Mol Microbiol; 1995 Jul; 17(1):95-107. PubMed ID: 7476212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites.
    Rossetti L; Cacchione S; De Menna A; Chapman L; Rhodes D; Savino M
    J Mol Biol; 2001 Mar; 306(5):903-13. PubMed ID: 11237607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.
    Albertyn J; Hohmann S; Thevelein JM; Prior BA
    Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional heterogeneity of Rap1p complexes with telomeric and UASrpg-like DNA sequences.
    Idrissi FZ; Fernández-Larrea JB; Piña B
    J Mol Biol; 1998 Dec; 284(4):925-35. PubMed ID: 9837716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-binding requirements of the yeast protein Rap1p as selected in silico from ribosomal protein gene promoter sequences.
    Lascaris RF; Mager WH; Planta RJ
    Bioinformatics; 1999 Apr; 15(4):267-77. PubMed ID: 10320394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential.
    Graham IR; Chambers A
    Mol Microbiol; 1994 Jun; 12(6):931-40. PubMed ID: 7934900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p).
    Drazinic CM; Smerage JB; López MC; Baker HV
    Mol Cell Biol; 1996 Jun; 16(6):3187-96. PubMed ID: 8649429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1.
    López MC; Smerage JB; Baker HV
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14112-7. PubMed ID: 9826662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo.
    Enomoto S; McCune-Zierath PD; Gerami-Nejad M; Sanders MA; Berman J
    Genes Dev; 1997 Feb; 11(3):358-70. PubMed ID: 9030688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae.
    Wotton D; Shore D
    Genes Dev; 1997 Mar; 11(6):748-60. PubMed ID: 9087429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rap1p and telomere length regulation in yeast.
    Marcand S; Wotton D; Gilson E; Shore D
    Ciba Found Symp; 1997; 211():76-93; discussion 93-103. PubMed ID: 9524752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae.
    Larsson K; Ansell R; Eriksson P; Adler L
    Mol Microbiol; 1993 Dec; 10(5):1101-11. PubMed ID: 7934860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length.
    Levy DL; Blackburn EH
    Mol Cell Biol; 2004 Dec; 24(24):10857-67. PubMed ID: 15572688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction.
    Ray A; Runge KW
    Mol Cell Biol; 1999 Jan; 19(1):31-45. PubMed ID: 9858529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The different (sur)faces of Rap1p.
    Piña B; Fernández-Larrea J; García-Reyero N; Idrissi FZ
    Mol Genet Genomics; 2003 Mar; 268(6):791-8. PubMed ID: 12655405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T; Tamai Y; Watanabe Y
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.