These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10842341)

  • 1. Dynamic ligand design and combinatorial optimization: designing inhibitors to endothiapepsin.
    Stultz CM; Karplus M
    Proteins; 2000 Aug; 40(2):258-89. PubMed ID: 10842341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated method for dynamic ligand design.
    Miranker A; Karplus M
    Proteins; 1995 Dec; 23(4):472-90. PubMed ID: 8749844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCSS functionality maps for a flexible protein.
    Stultz CM; Karplus M
    Proteins; 1999 Dec; 37(4):512-29. PubMed ID: 10651268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based thermodynamic design of peptide ligands: application to peptide inhibitors of the aspartic protease endothiapepsin.
    Luque I; Gómez J; Semo N; Freire E
    Proteins; 1998 Jan; 30(1):74-85. PubMed ID: 9443342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge optimization of the interface between protein kinases and their ligands.
    Sims PA; Wong CF; McCammon JA
    J Comput Chem; 2004 Aug; 25(11):1416-29. PubMed ID: 15185335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy.
    Ruvinsky AM; Kozintsev AV
    J Comput Chem; 2005 Aug; 26(11):1089-95. PubMed ID: 15929088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
    Alexov E
    Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of the contribution from the cavity effect to protein-ligand binding free energy.
    Grigoriev FV; Gabin SN; Romanov AN; Sulimov VB
    J Phys Chem B; 2008 Dec; 112(48):15355-60. PubMed ID: 18991438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiple-start Monte Carlo docking method.
    Hart TN; Read RJ
    Proteins; 1992 Jul; 13(3):206-22. PubMed ID: 1603810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
    Jayalakshmi V; Rama Krishna N
    J Magn Reson; 2004 May; 168(1):36-45. PubMed ID: 15082247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of water molecules in protein binding sites.
    Barillari C; Taylor J; Viner R; Essex JW
    J Am Chem Soc; 2007 Mar; 129(9):2577-87. PubMed ID: 17288418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors.
    Gohlke H; Klebe G
    Angew Chem Int Ed Engl; 2002 Aug; 41(15):2644-76. PubMed ID: 12203463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB; Vaidehi N; Zamanakos G; Goddard WA
    J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based identification of small molecule binding sites using a free energy model.
    Coleman RG; Salzberg AC; Cheng AC
    J Chem Inf Model; 2006; 46(6):2631-7. PubMed ID: 17125203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.