These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10842343)
1. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site. Rockey WM; Laederach A; Reilly PJ Proteins; 2000 Aug; 40(2):299-309. PubMed ID: 10842343 [TBL] [Abstract][Full Text] [Related]
2. Automated docking of maltose, 2-deoxymaltose, and maltotetraose into the soybean beta-amylase active site. Laederach A; Dowd MK; Coutinho PM; Reilly PJ Proteins; 1999 Nov; 37(2):166-75. PubMed ID: 10584063 [TBL] [Abstract][Full Text] [Related]
3. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase. Kang YN; Adachi M; Utsumi S; Mikami B J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253 [TBL] [Abstract][Full Text] [Related]
4. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. Seigner C; Prodanov E; Marchis-Mouren G Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose. Miyake H; Kurisu G; Kusunoki M; Nishimura S; Kitamura S; Nitta Y Biochemistry; 2003 May; 42(19):5574-81. PubMed ID: 12741813 [TBL] [Abstract][Full Text] [Related]
6. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Joyet P; Mokhtari A; Riboulet-Bisson E; Blancato VS; Espariz M; Magni C; Hartke A; Deutscher J; Sauvageot N Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455338 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Al Kazaz M; Desseaux V; Marchis-Mouren G; Prodanov E; Santimone M Eur J Biochem; 1998 Feb; 252(1):100-7. PubMed ID: 9523717 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of beta-amylase from Bacillus cereus var mycoides in complexes with substrate analogs and affinity-labeling reagents. Oyama T; Miyake H; Kusunoki M; Nitta Y J Biochem; 2003 Apr; 133(4):467-74. PubMed ID: 12761294 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism. Kang YN; Tanabe A; Adachi M; Utsumi S; Mikami B Biochemistry; 2005 Apr; 44(13):5106-16. PubMed ID: 15794648 [TBL] [Abstract][Full Text] [Related]
10. Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase from Neisseria polysaccharea. Albenne C; Skov LK; Mirza O; Gajhede M; Potocki-Véronèse G; Monsan P; Remaud-Simeon M FEBS Lett; 2002 Sep; 527(1-3):67-70. PubMed ID: 12220635 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase. Suetsugu N; Takeo K; Sanai Y; Kuge T J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271 [TBL] [Abstract][Full Text] [Related]
12. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Seigner C; Prodanov E; Marchis-Mouren G Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119 [TBL] [Abstract][Full Text] [Related]
13. Difference spectroscopic study of the interaction between soybean beta-amylase and substrate or substrate analogues. Nitta Y; Kunikata T; Watanabe T J Biochem; 1983 Apr; 93(4):1195-201. PubMed ID: 6190798 [TBL] [Abstract][Full Text] [Related]
14. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase. Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208 [TBL] [Abstract][Full Text] [Related]
15. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. Manas NH; Bakar FD; Illias RM J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296 [TBL] [Abstract][Full Text] [Related]
16. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data. André G; Buléon A; Haser R; Tran V Biopolymers; 1999 Dec; 50(7):751-62. PubMed ID: 10547530 [TBL] [Abstract][Full Text] [Related]
17. The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin. Mikami B; Hehre EJ; Sato M; Katsube Y; Hirose M; Morita Y; Sacchettini JC Biochemistry; 1993 Jul; 32(27):6836-45. PubMed ID: 8334116 [TBL] [Abstract][Full Text] [Related]
18. Model for carbohydrase action. Aspergillus oryzae alpha-amylase degradation of maltotriose. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2345-50. PubMed ID: 307964 [TBL] [Abstract][Full Text] [Related]
19. Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase. Kunikata T; Nishimura S; Nitta Y Biosci Biotechnol Biochem; 1996 Jul; 60(7):1104-8. PubMed ID: 8782404 [TBL] [Abstract][Full Text] [Related]
20. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase. Tran PL; Lee JS; Park KH FEBS Lett; 2014 Feb; 588(4):620-4. PubMed ID: 24440349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]