BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10842637)

  • 1. Changes in electroporation thresholds of lipid membranes by surfactants and peptides.
    Tung L; Troiano GC; Sharma V; Raphael RM; Stebe KJ
    Ann N Y Acad Sci; 1999 Oct; 888():249-65. PubMed ID: 10842637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of gramicidin on electroporation of lipid bilayers.
    Troiano GC; Stebe KJ; Raphael RM; Tung L
    Biophys J; 1999 Jun; 76(6):3150-7. PubMed ID: 10354439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers.
    Troiano GC; Tung L; Sharma V; Stebe KJ
    Biophys J; 1998 Aug; 75(2):880-8. PubMed ID: 9675188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.
    Lebar AM; Troiano GC; Tung L; Miklavcic D
    IEEE Trans Nanobioscience; 2002 Sep; 1(3):116-20. PubMed ID: 16696301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188.
    Collins JM; Despa F; Lee RC
    Biochim Biophys Acta; 2007 May; 1768(5):1238-46. PubMed ID: 17382288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.
    Lee H
    J Mol Graph Model; 2015 Jul; 60():162-8. PubMed ID: 26055631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations.
    Polak A; Bonhenry D; Dehez F; Kramar P; Miklavčič D; Tarek M
    J Membr Biol; 2013 Nov; 246(11):843-50. PubMed ID: 23780415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
    Sáenz A; Cañadas O; Bagatolli LA; Johnson ME; Casals C
    FEBS J; 2006 Jun; 273(11):2515-27. PubMed ID: 16704424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion.
    Fahsel S; Pospiech EM; Zein M; Hazlet TL; Gratton E; Winter R
    Biophys J; 2002 Jul; 83(1):334-44. PubMed ID: 12080124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-Mediated Structural Modulations to Planar, Amphiphilic Multilamellar Stacks.
    Speer DJ; Salvador-Castell M; Huang Y; Liu GY; Sinha SK; Parikh AN
    J Phys Chem B; 2023 Aug; 127(34):7497-7508. PubMed ID: 37584633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes.
    Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single-bilayer vesicles.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1981 Feb; 640(3):734-47. PubMed ID: 6163458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions.
    Houang EM; Bates FS; Sham YY; Metzger JM
    J Phys Chem B; 2017 Nov; 121(47):10657-10664. PubMed ID: 29049887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.