These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 10843340)
21. Assessment of the potential for soil acidification in North India using the critical load approach and locally derived data for acidic and basic inputs. Satsangi GS; Lawrence AJ; Lakhani A; Taneja A Chemosphere; 2003 Dec; 53(8):1011-21. PubMed ID: 14505724 [TBL] [Abstract][Full Text] [Related]
22. Terrestrial ecosystem recovery--modelling the effects of reduced acidic inputs and increased inputs of sea-salts induced by global change. Beier C; Moldan F; Wright RF Ambio; 2003 Jun; 32(4):275-82. PubMed ID: 12956593 [TBL] [Abstract][Full Text] [Related]
23. Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Skeffington RA; Whitehead PG; Heywood E; Hall JR; Wadsworth RA; Reynolds B Sci Total Environ; 2007 Sep; 382(2-3):199-213. PubMed ID: 17555799 [TBL] [Abstract][Full Text] [Related]
24. Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: impacts on surface water chemistry and significance for trend determination. Evans CD; Monteith DT; Harriman R Sci Total Environ; 2001 Jan; 265(1-3):115-29. PubMed ID: 11227259 [TBL] [Abstract][Full Text] [Related]
25. A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada. Whitfield CJ; Watmough SA Sci Total Environ; 2012 Oct; 437():165-72. PubMed ID: 22940479 [TBL] [Abstract][Full Text] [Related]
26. Calculation and mapping of critical loads of sulfur and nitrogen in Flanders, Belgium. Craenen H; Van Ranst E; Tack FM; Verloo MG Sci Total Environ; 2000 May; 254(1):55-64. PubMed ID: 10845447 [TBL] [Abstract][Full Text] [Related]
27. Effect of declining lake base cation concentration on freshwater critical load calculations. Watmough SA; Aherne J; Dillon PJ Environ Sci Technol; 2005 May; 39(9):3255-60. PubMed ID: 15926576 [TBL] [Abstract][Full Text] [Related]
28. Modeling surface water critical loads with PROFILE: possibilities and challenges. Rapp L; Bishop K J Environ Qual; 2003; 32(6):2290-300. PubMed ID: 14674553 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of different approaches for modeling effects of acid rain on soils in China. Larssen T; Schnoor JL; Seip HM; Dawei Z Sci Total Environ; 2000 Feb; 246(2-3):175-93. PubMed ID: 10696722 [TBL] [Abstract][Full Text] [Related]
30. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA. McHale MR; Burns DA; Siemion J; Antidormi MR Environ Pollut; 2017 Oct; 229():607-620. PubMed ID: 28689149 [TBL] [Abstract][Full Text] [Related]
31. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees. Cape JN Environ Pollut; 1993; 82(2):167-80. PubMed ID: 15091786 [TBL] [Abstract][Full Text] [Related]
32. Major nutrients and acidity: budgets and trends at four remote boreal stands in Finland during the 1990s. Ukonmaanaho L; Starr M Sci Total Environ; 2002 Oct; 297(1-3):21-41. PubMed ID: 12389777 [TBL] [Abstract][Full Text] [Related]
33. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data. Larssen T Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863 [TBL] [Abstract][Full Text] [Related]
34. Acidification of soil solution in a chestnut forest stand in southern Switzerland: are there signs of recovery? Pannatier EG; Luster J; Zimmermann S; Blaser P Environ Sci Technol; 2005 Oct; 39(20):7761-7. PubMed ID: 16295834 [TBL] [Abstract][Full Text] [Related]
35. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Lawrence GB; Sutherland JW; Boylen CW; Nierzwicki-Bauer SW; Momen B; Baldigo BP; Simonin HA Environ Sci Technol; 2007 Jan; 41(1):93-8. PubMed ID: 17265932 [TBL] [Abstract][Full Text] [Related]
36. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Devlaeminck R; De Schrijver A; Hermy M Sci Total Environ; 2005 Jan; 337(1-3):241-52. PubMed ID: 15626394 [TBL] [Abstract][Full Text] [Related]
37. The effects of excess nitrogen deposition on young Norway spruce trees. Part I the soil. Wilson EJ; Skeffington RA Environ Pollut; 1994; 86(2):141-51. PubMed ID: 15091631 [TBL] [Abstract][Full Text] [Related]
38. Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification. Larssen T; Duan L; Mulder J Environ Sci Technol; 2011 Feb; 45(4):1192-8. PubMed ID: 21250675 [TBL] [Abstract][Full Text] [Related]
39. Critical loads for alkalization in terrestrial ecosystems. Watmough SA Sci Total Environ; 2024 Jun; 927():171967. PubMed ID: 38537833 [TBL] [Abstract][Full Text] [Related]
40. Interception and attenuation of atmospheric pollution in a lowland ash forested site, Old Pond Close, Northamptonshire, UK. Neal C Sci Total Environ; 2002 Jan; 282-283():99-119. PubMed ID: 11846089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]