These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10843551)

  • 21. Investigations of a new field in gas chromatography: capillary columns with a super-thick layer of stationary liquid phase.
    Berezkin VG; Lapin AB; Lipsky JB
    J Chromatogr A; 2005 Aug; 1084(1-2):18-23. PubMed ID: 16114231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography.
    Lenca N; Poole CF
    J Chromatogr A; 2018 Jul; 1559():164-169. PubMed ID: 28619588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of retention in comprehensive two-dimensional gas chromatography using flow modulation with methane dopant.
    Klee MS; Blumberg LM
    J Chromatogr A; 2010 Mar; 1217(11):1830-7. PubMed ID: 20138286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of distribution factors for heavy n-alkanes (nC
    Hernandez-Baez DM; Reid A; Chapoy A; Tohidi B
    J Chromatogr A; 2019 Apr; 1591():138-146. PubMed ID: 30686646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination and evaluation of gas holdup time with the quadratic equation model and comparison with nonlinear models for isothermal gas chromatography.
    Wu L; Chen M; Chen Y; Li QX
    J Chromatogr A; 2013 Jul; 1297():196-203. PubMed ID: 23726077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution to the time balance in gas-liquid chromatography new definition equations of the retention times and retention volumes.
    Santiuste JM; Takács JM
    J Chromatogr A; 2002 Aug; 966(1-2):145-53. PubMed ID: 12214688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A regression model for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Wang B; Shen H; Fang A; Huang DS; Jiang C; Zhang J; Chen P
    J Chromatogr A; 2016 Jun; 1451():127-134. PubMed ID: 27208985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.
    Wick CD; Siepman JI; Klotz WL; Schure MR
    J Chromatogr A; 2002 Apr; 954(1-2):181-90. PubMed ID: 12058902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography.
    Xie SM; Zhang XH; Zhang ZJ; Zhang M; Jia J; Yuan LM
    Anal Bioanal Chem; 2013 Apr; 405(10):3407-12. PubMed ID: 23361228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of theoretical plate number in isothermal gas chromatographic analysis on capillary columns.
    Moretti P; Vezzani S; Castello G
    J Chromatogr A; 2006 Nov; 1133(1-2):305-14. PubMed ID: 16959257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes.
    Chang N; Gu ZY; Wang HF; Yan XP
    Anal Chem; 2011 Sep; 83(18):7094-101. PubMed ID: 21800908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lattice-fluid model for gas-liquid chromatography.
    Tao Y; Wells PS; Yi X; Yun KS; Parcher JF
    J Chromatogr A; 1999 Nov; 862(1):49-64. PubMed ID: 10588340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of permethyl pillar[5]arene stationary phase for high-resolution gas chromatography.
    Zhang Y; Lv Q; Qi M; Cai Z
    J Chromatogr A; 2017 May; 1496():115-121. PubMed ID: 28356191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An equation to calculate the actual methylene middle parameter as a function of temperature.
    Mohammad MA
    J Chromatogr A; 2015 Aug; 1408():267-71. PubMed ID: 26187766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructured Silver Coating as a Stationary Phase for Capillary Gas Chromatography.
    Jiang Q; Xu P; Feng J; Sun M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexagonal boron nitride stationary phase for gas chromatography.
    Xiong X; Qi M
    J Chromatogr A; 2018 Sep; 1567():191-197. PubMed ID: 30100014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of gas chromatographic peak width in capillary columns at different temperatures, carrier gas flows, column lengths, inside diameters and carbon numbers.
    Krisnangkura K; Pongtonkulpanich V
    J Sep Sci; 2006 Jan; 29(1):81-9. PubMed ID: 16485712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution coefficients of n-alkanes measured on wall-coated capillary columns.
    González FR; Gagliardi LG
    J Chromatogr A; 2000 May; 879(2):157-68. PubMed ID: 10893032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.
    Yang X; Li C; Qi M; Qu L
    J Chromatogr A; 2016 Aug; 1460():173-80. PubMed ID: 27423773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times.
    McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ
    J Chromatogr A; 2014 Feb; 1330():69-73. PubMed ID: 24484693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.