These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 10843832)
21. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Karumbaiah L; Oppert B; Jurat-Fuentes JL; Adang MJ Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):139-46. PubMed ID: 17145193 [TBL] [Abstract][Full Text] [Related]
22. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Wu X; Rogers Leonard B; Zhu YC; Abel CA; Head GP; Huang F J Invertebr Pathol; 2009 Jan; 100(1):29-34. PubMed ID: 18955062 [TBL] [Abstract][Full Text] [Related]
23. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Upadhyay SK; Singh PK Biotechnol Lett; 2011 Oct; 33(10):2027-36. PubMed ID: 21660568 [TBL] [Abstract][Full Text] [Related]
24. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
25. Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp. Padmaja T; Suneetha N; Sashidhar RB; Sharma HC; Deshpande V; Venkateswerlu G J Appl Microbiol; 2008 Apr; 104(4):1171-81. PubMed ID: 18028364 [TBL] [Abstract][Full Text] [Related]
26. [Domain swapping of Cry1Aa and Cry1Ca from Bacillus thuringiensis influence crystal formation and toxicity]. Guo QY; Cai QX; Han B; Yuan ZM Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):906-11. PubMed ID: 17302152 [TBL] [Abstract][Full Text] [Related]
27. Changes in gene expression in the larval gut of Ostrinia nubilalis in Response to Bacillus thuringiensis Cry1Ab protoxin ingestion. Yao J; Buschman LL; Lu N; Khajuria C; Zhu KY Toxins (Basel); 2014 Apr; 6(4):1274-94. PubMed ID: 24704690 [TBL] [Abstract][Full Text] [Related]
28. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
29. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
30. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
31. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Xue JL; Cai QX; Zheng DS; Yuan ZM Lett Appl Microbiol; 2005; 40(6):460-5. PubMed ID: 15892743 [TBL] [Abstract][Full Text] [Related]
32. Quercetin interacts with Cry1Ac protein to affect larval growth and survival of Helicoverpa armigera. Li Z; Guan X; Michaud JP; Zhang Q; Liu X Pest Manag Sci; 2016 Jul; 72(7):1359-65. PubMed ID: 26423365 [TBL] [Abstract][Full Text] [Related]
33. Proteolytic processing of native Cry1Ab toxin by midgut extracts and purified trypsins from the Mediterranean corn borer Sesamia nonagrioides. Díaz-Mendoza M; Farinós GP; Castañera P; Hernández-Crespo P; Ortego F J Insect Physiol; 2007 May; 53(5):428-35. PubMed ID: 17336999 [TBL] [Abstract][Full Text] [Related]
35. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Haider MZ; Knowles BH; Ellar DJ Eur J Biochem; 1986 May; 156(3):531-40. PubMed ID: 3009187 [TBL] [Abstract][Full Text] [Related]
36. The requirement for early exposure of Haemonchus contortus larvae to Bacillus thuringiensis for effective inhibition of larval development. O'Grady J; Akhurst RJ; Kotze AC Vet Parasitol; 2007 Nov; 150(1-2):97-103. PubMed ID: 17951006 [TBL] [Abstract][Full Text] [Related]
37. Bio-potency of a 21 kDa Kunitz-type trypsin inhibitor from Tamarindus indica seeds on the developmental physiology of H. armigera. Pandey PK; Jamal F Pestic Biochem Physiol; 2014 Nov; 116():94-102. PubMed ID: 25454525 [TBL] [Abstract][Full Text] [Related]
38. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Oppert B; Kramer KJ; Johnson DE; MacIntosh SC; McGaughey WH Biochem Biophys Res Commun; 1994 Feb; 198(3):940-7. PubMed ID: 8117300 [TBL] [Abstract][Full Text] [Related]
39. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
40. Effects of Vip3AcAa+Cry1Ac Cotton on Midgut Tissue in Helicoverpa armigera (Lepidoptera: Noctuidae). Chen W; Liu C; Lu G; Cheng H; Shen Z; Wu K J Insect Sci; 2018 Jul; 18(4):. PubMed ID: 30137436 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]