These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10843899)

  • 1. Potassium channels modulate cerebral autoregulation during acute hypertension.
    PaternĂ² R; Heistad DD; Faraci FM
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H2003-7. PubMed ID: 10843899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional activity of Ca2+-dependent K+ channels is increased in basilar artery during chronic hypertension.
    PaternĂ² R; Heistad DD; Faraci FM
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1287-91. PubMed ID: 9087603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem.
    Horiuchi T; Dietrich HH; Tsugane S; Dacey RG
    Stroke; 2001 Jan; 32(1):218-24. PubMed ID: 11136940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney.
    Troncoso Brindeiro CM; Fallet RW; Lane PH; Carmines PK
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F171-8. PubMed ID: 18495797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and function of Ca(2+)-activated K+ channels in arteriolar muscle cells.
    Jackson WF; Blair KL
    Am J Physiol; 1998 Jan; 274(1):H27-34. PubMed ID: 9458848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of voltage-dependent and Ca(2+)-activated K(+) channels on the regulation of isometric force in porcine coronary artery.
    Shimizu S; Yokoshiki H; Sperelakis N; Paul RJ
    J Vasc Res; 2000; 37(1):16-25. PubMed ID: 10720882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin.
    Malvin GM; Walker BR
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1308-14. PubMed ID: 11294748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat.
    PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Nov; 28(11):2290-4; discussion 2295. PubMed ID: 9368578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial dysfunction augments myogenic arteriolar constriction in hypertension.
    Huang A; Sun D; Koller A
    Hypertension; 1993 Dec; 22(6):913-21. PubMed ID: 8244524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity.
    Kirton CA; Loutzenhiser R
    Am J Physiol; 1998 Aug; 275(2):H467-75. PubMed ID: 9683434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium channels modulate hypoxic pulmonary vasoconstriction.
    Barman SA
    Am J Physiol; 1998 Jul; 275(1):L64-70. PubMed ID: 9688936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Ca(2+)-activated K(+) channels on rat renal arteriolar responses to depolarizing agonists.
    Fallet RW; Bast JP; Fujiwara K; Ishii N; Sansom SC; Carmines PK
    Am J Physiol Renal Physiol; 2001 Apr; 280(4):F583-91. PubMed ID: 11249849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.
    Cabell F; Weiss DS; Price JM
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1455-60. PubMed ID: 7943391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.
    Verlohren S; Dubrovska G; Tsang SY; Essin K; Luft FC; Huang Y; Gollasch M
    Hypertension; 2004 Sep; 44(3):271-6. PubMed ID: 15302842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide produced by isolated arterioles attenuates pressure-induced vasoconstriction.
    Zhang F; Kaide J; Wei Y; Jiang H; Yu C; Balazy M; Abraham NG; Wang W; Nasjletti A
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H350-8. PubMed ID: 11406503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of K+ channels in arteriolar vasodilation mediated by integrin interaction with RGD-containing peptide.
    Platts SH; Mogford JE; Davis MJ; Meininger GA
    Am J Physiol; 1998 Oct; 275(4):H1449-54. PubMed ID: 9746496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential involvement of potassium channel subtypes in early and late sepsis-induced hyporesponsiveness to vasoconstrictors.
    Sordi R; Fernandes D; Assreuy J
    J Cardiovasc Pharmacol; 2010 Aug; 56(2):184-9. PubMed ID: 20505522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q; Bryan RM; Pelligrino DA
    Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.