BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10844588)

  • 1. Trafficking of the vasopressin and oxytocin prohormone through the regulated secretory pathway.
    de Bree FM
    J Neuroendocrinol; 2000 Jun; 12(6):589-94. PubMed ID: 10844588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hormone Domain of the Vasopressin Prohormone is Required for the Correct Prohormone Trafficking Through the Secretory Pathway.
    De Bree FM; Van Der Kleij AA; Nijenhuis M; Zalm R; Murphy D; Burbach JP
    J Neuroendocrinol; 2003 Dec; 15(12):1156-63. PubMed ID: 14636177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A diabetes insipidus vasopressin prohormone altered outside the central core of neurophysin accumulates in the endoplasmic reticulum.
    Nijenhuis M; Zalm R; Burbach JP
    Mol Cell Endocrinol; 2000 Sep; 167(1-2):55-67. PubMed ID: 11000520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships of the vasopressin prohormone domains.
    de Bree FM; Burbach JP
    Cell Mol Neurobiol; 1998 Apr; 18(2):173-91. PubMed ID: 9535289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus.
    Barat C; Simpson L; Breslow E
    Biochemistry; 2004 Jun; 43(25):8191-203. PubMed ID: 15209516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, folding, and thermodynamic properties of the bovine oxytocin-neurophysin precursor: relationships to the intermolecular oxytocin-neurophysin complex.
    Eubanks S; Lu M; Peyton D; Breslow E
    Biochemistry; 1999 Oct; 38(41):13530-41. PubMed ID: 10521260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the vasopressin prohormone involved in diabetes insipidus impair endoplasmic reticulum export but not sorting.
    Nijenhuis M; Zalm R; Burbach JP
    J Biol Chem; 1999 Jul; 274(30):21200-8. PubMed ID: 10409675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting of the vasopressin prohormone into the regulated secretory pathway.
    de Bree FM; Knight D; Howell L; Murphy D
    FEBS Lett; 2000 Jun; 475(3):175-80. PubMed ID: 10869551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the vasopressin/oxytocin superfamily: characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin, from the mollusc Lymnaea stagnalis.
    van Kesteren RE; Smit AB; Dirks RW; de With ND; Geraerts WP; Joosse J
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4593-7. PubMed ID: 1584795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NG peptides: a novel family of neurophysin-associated neuropeptides.
    Elphick MR
    Gene; 2010 Jun; 458(1-2):20-6. PubMed ID: 20303398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of an unliganded neurophysin and its vasopressin complex: implications for binding and allosteric mechanisms.
    Wu CK; Hu B; Rose JP; Liu ZJ; Nguyen TL; Zheng C; Breslow E; Wang BC
    Protein Sci; 2001 Sep; 10(9):1869-80. PubMed ID: 11514677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of basic amino acid pairs in prohormone processing: model of pro-ocytocin/neurophysin processing domain.
    Lazar N; Brakch N; Panchal M; Fahy C; Rholam M
    Arch Biochem Biophys; 2007 Jul; 463(2):231-6. PubMed ID: 17467653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGFP-tagged vasopressin precursor protein sorting into large dense core vesicles and secretion from PC12 cells.
    Zhang BJ; Yamashita M; Fields R; Kusano K; Gainer H
    Cell Mol Neurobiol; 2005 Jun; 25(3-4):581-605. PubMed ID: 16075380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential cleavage of provasopressin by the major molecular forms of SPC3.
    Coates LC; Birch NP
    J Neurochem; 1998 Apr; 70(4):1670-8. PubMed ID: 9523585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocrinomic profile of neurointermediate lobe pituitary prohormone processing in PC1/3- and PC2-Null mice using SELDI-TOF mass spectrometry.
    Hardiman A; Friedman TC; Grunwald WC; Furuta M; Zhu Z; Steiner DF; Cool DR
    J Mol Endocrinol; 2005 Jun; 34(3):739-51. PubMed ID: 15956344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural modeling of the pro-ocytocin-neurophysin precursor.
    Velikson B; Cohen P; Rholam M; Rose JP; Wang BC; Smith JC
    Protein Eng; 1998 Oct; 11(10):909-16. PubMed ID: 9862210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular, thermodynamic, and biological aspects of recognition and function in neurophysin-hormone systems: a model system for the analysis of protein-peptide interactions.
    Breslow E; Burman S
    Adv Enzymol Relat Areas Mol Biol; 1990; 63():1-67. PubMed ID: 2407063
    [No Abstract]   [Full Text] [Related]  

  • 18. Complete amino acid sequence of goose VLDV-neurophysin. Traces of a putative gene conversion between promesotocin and provasotocin genes.
    Michel G; Lévy B; Chauvet MT; Chauvet J; Acher R
    Int J Pept Protein Res; 1990 Nov; 36(5):457-64. PubMed ID: 2276874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum.
    Birk J; Friberg MA; Prescianotto-Baschong C; Spiess M; Rutishauser J
    J Cell Sci; 2009 Nov; 122(Pt 21):3994-4002. PubMed ID: 19825939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence redesign and the assembly mechanism of the oxytocin/bovine neurophysin I biosynthetic precursor.
    Ando S; McPhie P; Chaiken IM
    J Biol Chem; 1987 Sep; 262(27):12962-9. PubMed ID: 3654597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.