These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10845109)

  • 1. Neural adaptation in the generation of rhythmic behavior.
    Pearson KG
    Annu Rev Physiol; 2000; 62():723-53. PubMed ID: 10845109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chapter 8--challenging the adaptive capacity of rhythmic movement control: from denervation to force field adaptation.
    Bouyer LJ
    Prog Brain Res; 2011; 188():119-34. PubMed ID: 21333806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance.
    Iwasaki T; Zheng M
    Biol Cybern; 2006 Apr; 94(4):245-61. PubMed ID: 16404611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy efficient and robust rhythmic limb movement by central pattern generators.
    Verdaasdonk BW; Koopman HF; Helm FC
    Neural Netw; 2006 May; 19(4):388-400. PubMed ID: 16352419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating the walking gait: role of sensory feedback.
    Pearson KG
    Prog Brain Res; 2004; 143():123-9. PubMed ID: 14653157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromodulation of central pattern generators in invertebrates and vertebrates.
    Dickinson PS
    Curr Opin Neurobiol; 2006 Dec; 16(6):604-14. PubMed ID: 17085040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trial-by-trial motor adaptation: a window into elemental neural computation.
    Thoroughman KA; Fine MS; Taylor JA
    Prog Brain Res; 2007; 165():373-82. PubMed ID: 17925258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.
    Bidaye SS; Bockemühl T; Büschges A
    J Neurophysiol; 2018 Feb; 119(2):459-475. PubMed ID: 29070634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory neural networks.
    Selverston AI; Moulins M
    Annu Rev Physiol; 1985; 47():29-48. PubMed ID: 2986532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity derivatives for flexible sensorimotor learning.
    Abdelghani MN; Lillicrap TP; Tweed DB
    Neural Comput; 2008 Aug; 20(8):2085-111. PubMed ID: 18336076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central pattern generators of the mammalian spinal cord.
    Frigon A
    Neuroscientist; 2012 Feb; 18(1):56-69. PubMed ID: 21518815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Initial state' coordinations reproduce the instant flexibility for human walking.
    Ohgane A; Ohgane K; Ei S; Mahara H; Ohtsuki T
    Biol Cybern; 2005 Dec; 93(6):426-35. PubMed ID: 16228223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.
    Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA
    Biol Cybern; 2005 Dec; 93(6):391-409. PubMed ID: 16292659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system.
    Nistri A; Ostroumov K; Sharifullina E; Taccola G
    J Physiol; 2006 Apr; 572(Pt 2):323-34. PubMed ID: 16469790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The insect frontal ganglion and stomatogastric pattern generator networks.
    Ayali A
    Neurosignals; 2004; 13(1-2):20-36. PubMed ID: 15004423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.