These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10845368)

  • 1. Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone.
    Timlin JA; Carden A; Morris MD; Rajachar RM; Kohn DH
    Anal Chem; 2000 May; 72(10):2229-36. PubMed ID: 10845368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased intracortical remodeling following fatigue damage.
    Mori S; Burr DB
    Bone; 1993; 14(2):103-9. PubMed ID: 8334026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdamage formation in individual bovine trabeculae during fatigue testing.
    Frank M; Fischer JT; Thurner PJ
    J Biomech; 2021 Jan; 115():110131. PubMed ID: 33257009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading.
    Huja SS; Hasan MS; Pidaparti R; Turner CH; Garetto LP; Burr DB
    J Biomech; 1999 Nov; 32(11):1243-9. PubMed ID: 10541076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage.
    Herman BC; Cardoso L; Majeska RJ; Jepsen KJ; Schaffler MB
    Bone; 2010 Oct; 47(4):766-72. PubMed ID: 20633708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracortical remodeling in adult rat long bones after fatigue loading.
    Bentolila V; Boyce TM; Fyhrie DP; Drumb R; Skerry TM; Schaffler MB
    Bone; 1998 Sep; 23(3):275-81. PubMed ID: 9737350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage type and strain mode associations in human compact bone bending fatigue.
    Boyce TM; Fyhrie DP; Glotkowski MC; Radin EL; Schaffler MB
    J Orthop Res; 1998 May; 16(3):322-9. PubMed ID: 9671927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.
    Leng H; Wang X; Ross RD; Niebur GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):68-75. PubMed ID: 18443659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional morphology of microdamage in peri-screw bone: a scanning electron microscopy of methylmethacrylate cast replica.
    Wang L; Shao J; Ye T; Deng L; Qiu S
    Microsc Microanal; 2012 Oct; 18(5):1106-11. PubMed ID: 23046724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.
    Brock GR; Kim G; Ingraffea AR; Andrews JC; Pianetta P; van der Meulen MC
    PLoS One; 2013; 8(3):e57942. PubMed ID: 23472121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microdamage adjacent to endosseous implants.
    Huja SS; Katona TR; Burr DB; Garetto LP; Roberts WE
    Bone; 1999 Aug; 25(2):217-22. PubMed ID: 10456388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.