BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10845374)

  • 1. Zeptomole-sensitivity electrospray ionization--Fourier transform ion cyclotron resonance mass spectrometry of proteins.
    Belov ME; Gorshkov MV; Udseth HR; Anderson GA; Smith RD
    Anal Chem; 2000 May; 72(10):2271-9. PubMed ID: 10845374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.
    Chen Y; Leach FE; Kaiser NK; Dang X; Ibrahim YM; Norheim RV; Anderson GA; Smith RD; Marshall AG
    J Mass Spectrom; 2015 Jan; 50(1):280-4. PubMed ID: 25601704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mixture analysis of poly(ethylene glycol) using high-field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry.
    Robinson EW; Garcia DE; Leib RD; Williams ER
    Anal Chem; 2006 Apr; 78(7):2190-8. PubMed ID: 16579597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.
    Ross CW; Simonsick WJ; Bogusky MJ; Celikay RW; Guare JP; Newton RC
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27367671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of axial kinetic energy induced perturbations on observed cyclotron frequency.
    Kaiser NK; Weisbrod CR; Webb BN; Bruce JE
    J Am Soc Mass Spectrom; 2008 Apr; 19(4):467-78. PubMed ID: 18262433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spontaneous loss of coherence catastrophe in Fourier transform ion cyclotron resonance mass spectrometry.
    Aizikov K; Mathur R; O'Connor PB
    J Am Soc Mass Spectrom; 2009 Feb; 20(2):247-56. PubMed ID: 19013078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical profile of petals from black Dahlia pinnata by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry.
    Granados-Balbuena SY; Díaz-Pacheco A; García-Meza MG; Tapia-López L; Cruz-Narváez Y; Ocaranza-Sánchez E
    Phytochem Anal; 2023 Dec; 34(8):1009-1021. PubMed ID: 37518673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First signal on the cryogenic Fourier-transform ion cyclotron resonance mass spectrometer.
    Lin C; Mathur R; Aizikov K; O'Connor PB
    J Am Soc Mass Spectrom; 2007 Dec; 18(12):2090-3. PubMed ID: 17931882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative accumulation multiplexing Fourier transform ion cyclotron resonance mass spectrometry.
    Bushey JM; Danell RM; Glish GL
    Anal Chem; 2009 Jul; 81(14):5623-8. PubMed ID: 19548663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond.
    Campuzano IDG; Nshanian M; Spahr C; Lantz C; Netirojjanakul C; Li H; Wongkongkathep P; Wolff JJ; Loo JA
    J Am Soc Mass Spectrom; 2020 May; 31(5):1155-1162. PubMed ID: 32196330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry.
    Han J; Danell RM; Patel JR; Gumerov DR; Scarlett CO; Speir JP; Parker CE; Rusyn I; Zeisel S; Borchers CH
    Metabolomics; 2008 Jun; 4(2):128-140. PubMed ID: 19081807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell and Subcellular Analysis Using Ultrahigh Resolution 21 T MALDI FTICR Mass Spectrometry.
    Castro DC; Smith KW; Norsworthy MD; Rubakhin SS; Weisbrod CR; Hendrickson CL; Sweedler JV
    Anal Chem; 2023 May; 95(17):6980-6988. PubMed ID: 37070980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates.
    Calabrese V; Schmitz-Afonso I; Riah-Anglet W; Trinsoutrot-Gattin I; Pawlak B; Afonso C
    Talanta; 2023 Feb; 253():123901. PubMed ID: 36088848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-noise, wideband preamplifier for a Fourier-transform ion cyclotron resonance mass spectrometer.
    Mathur R; Knepper RW; O'Connor PB
    J Am Soc Mass Spectrom; 2007 Dec; 18(12):2233-41. PubMed ID: 18029195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping ring electrode cell: a FTICR mass spectrometer cell for improved signal-to-noise and resolving power.
    Weisbrod CR; Kaiser NK; Skulason GE; Bruce JE
    Anal Chem; 2008 Sep; 80(17):6545-53. PubMed ID: 18681460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A personal perspective on chemistry-driven RNA research.
    Micura R; Kreutz C; Breuker K
    Biopolymers; 2013 Dec; 99(12):1114-23. PubMed ID: 23754524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring Reaction Intermediates to Predict Enantioselectivity Using Mass Spectrometry.
    Hilgers R; Yong Teng S; Briš A; Pereverzev AY; White P; Jansen JJ; Roithová J
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202205720. PubMed ID: 35561144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIMAS: microfluidic platform in tandem with MALDI mass spectrometry for protein quantification from small cell ensembles.
    Cruz Villarreal J; Kruithoff R; Egatz-Gomez A; Coleman PD; Ros R; Sandrin TR; Ros A
    Anal Bioanal Chem; 2022 May; 414(13):3945-3958. PubMed ID: 35385983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Considerations for Next-Generation Proteomics.
    Palmblad M
    J Proteome Res; 2021 Jun; 20(6):3395-3399. PubMed ID: 33904308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell Proteomics: Progress and Prospects.
    Kelly RT
    Mol Cell Proteomics; 2020 Nov; 19(11):1739-1748. PubMed ID: 32847821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.