These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10845446)

  • 1. Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: effects of trophic level.
    Winterbourn MJ; McDiffett WF; Eppley SJ
    Sci Total Environ; 2000 May; 254(1):45-54. PubMed ID: 10845446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes.
    Quinn MR; Feng X; Folt CL; Chamberlain CP
    Sci Total Environ; 2003 Dec; 317(1-3):73-89. PubMed ID: 14630413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado.
    Besser JM; Brumbaugh WG; May TW; Church SE; Kimball BA
    Arch Environ Contam Toxicol; 2001 Jan; 40(1):48-59. PubMed ID: 11116340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic in stream waters is bioaccumulated but neither biomagnified through food webs nor biodispersed to land.
    Hepp LU; Pratas JA; Graça MA
    Ecotoxicol Environ Saf; 2017 May; 139():132-138. PubMed ID: 28129598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation of aluminium and iron in the food chain of Lake Loskop, South Africa.
    Oberholster PJ; Myburgh JG; Ashton PJ; Coetzee JJ; Botha AM
    Ecotoxicol Environ Saf; 2012 Jan; 75(1):134-41. PubMed ID: 21924494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminium (Al) fractionation and speciation; getting closer to describing the factors influencing Al(3+) in water impacted by acid mine drainage.
    Chamier J; Wicht M; Cyster L; Ndindi NP
    Chemosphere; 2015 Jul; 130():17-23. PubMed ID: 25747302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low concentrations of selenium in stream food webs of eastern Canada.
    Jardine TD; Kidd KA
    Sci Total Environ; 2011 Jan; 409(4):785-91. PubMed ID: 21146198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved metal concentrations in surface waters from west-central Indiana contaminated with acidic mine drainage.
    Allen SK; Allen JM; Lucas S
    Bull Environ Contam Toxicol; 1996 Feb; 56(2):240-3. PubMed ID: 8720095
    [No Abstract]   [Full Text] [Related]  

  • 9. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife.
    Sparling DW; Lowe TP
    Rev Environ Contam Toxicol; 1996; 145():1-127. PubMed ID: 7494908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing aluminium toxicity in streams affected by acid mine drainage.
    Waters AS; Webster-Brown JG
    Water Sci Technol; 2013; 67(8):1764-72. PubMed ID: 23579831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand.
    Davies H; Weber P; Lindsay P; Craw D; Pope J
    Sci Total Environ; 2011 Jul; 409(15):2971-80. PubMed ID: 21669330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.
    Clapcott JE; Goodwin EO; Harding JS
    Environ Manage; 2016 Mar; 57(3):711-21. PubMed ID: 26467674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metals: confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity.
    Greig HS; Niyogi DK; Hogsden KL; Jellyman PG; Harding JS
    Sci Total Environ; 2010 Jul; 408(16):3240-50. PubMed ID: 20478612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters.
    De Jonge M; Tipping E; Lofts S; Bervoets L; Blust R
    Aquat Toxicol; 2013 Oct; 142-143():294-302. PubMed ID: 24076621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation and Dispersion of Uranium by Freshwater Organisms.
    Bergmann M; Graça MAS
    Arch Environ Contam Toxicol; 2020 Feb; 78(2):254-266. PubMed ID: 31650202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs.
    Hogsden KL; Harding JS
    Environ Pollut; 2012 Mar; 162():466-74. PubMed ID: 22088498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.
    Kruse NA; DeRose L; Korenowsky R; Bowman JR; Lopez D; Johnson K; Rankin E
    J Environ Manage; 2013 Oct; 128():1000-11. PubMed ID: 23895912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain).
    Solà C; Burgos M; Plazuelo A; Toja J; Plans M; Prat N
    Sci Total Environ; 2004 Oct; 333(1-3):109-26. PubMed ID: 15364523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs.
    Naicker K; Cukrowska E; McCarthy TS
    Environ Pollut; 2003; 122(1):29-40. PubMed ID: 12535593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.