BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10845700)

  • 21. Effect of retroviral proteinase inhibitors on Mason-Pfizer monkey virus maturation and transmembrane glycoprotein cleavage.
    Sommerfelt MA; Petteway SR; Dreyer GB; Hunter E
    J Virol; 1992 Jul; 66(7):4220-7. PubMed ID: 1602542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning, bacterial expression, and characterization of the Mason-Pfizer monkey virus proteinase.
    Hrusková-Heidingsfeldová O; Andreansky M; Fábry M; Bláha I; Strop P; Hunter E
    J Biol Chem; 1995 Jun; 270(25):15053-8. PubMed ID: 7797487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases.
    Alvarez E; Menéndez-Arias L; Carrasco L
    J Virol; 2003 Dec; 77(23):12392-400. PubMed ID: 14610163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors.
    Mótyán JA; Kassay N; Matúz K; Tőzsér J
    Viruses; 2022 Aug; 14(9):. PubMed ID: 36146695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of substrate residues on the P2' preference of retroviral proteinases.
    Boross P; Bagossi P; Copeland TD; Oroszlan S; Louis JM; Tözsér J
    Eur J Biochem; 1999 Sep; 264(3):921-9. PubMed ID: 10491141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and biochemical studies of retroviral proteases.
    Wlodawer A; Gustchina A
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):16-34. PubMed ID: 10708846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.
    Konvalinka J; Litterst MA; Welker R; Kottler H; Rippmann F; Heuser AM; Kräusslich HG
    J Virol; 1995 Nov; 69(11):7180-6. PubMed ID: 7474139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of autoprocessing of Mason-Pfizer monkey virus proteinase in vitro. Three active forms of proteinase.
    Pichová I; Zábranský A; Kost'álová I; Hrusková-Heidingsfeldová O; Andreansky M; Hunter E; Ruml T
    Adv Exp Med Biol; 1998; 436():105-8. PubMed ID: 9561206
    [No Abstract]   [Full Text] [Related]  

  • 29. Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases.
    Beck ZQ; Lin YC; Elder JH
    J Virol; 2001 Oct; 75(19):9458-69. PubMed ID: 11533208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation.
    Davis DA; Brown CA; Newcomb FM; Boja ES; Fales HM; Kaufman J; Stahl SJ; Wingfield P; Yarchoan R
    J Virol; 2003 Mar; 77(5):3319-25. PubMed ID: 12584357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved chromatographic method for the assay of retroviral proteases.
    Hori H; Takahashi T; Kato A; Ueda S; Kakidani H
    Adv Exp Med Biol; 1991; 306():529-31. PubMed ID: 1667453
    [No Abstract]   [Full Text] [Related]  

  • 32. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization.
    Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J
    Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retroviral proteases: structure, function and inhibition from a non-anticipated viral enzyme to the target of a most promising HIV therapy.
    von der Helm K
    Biol Chem; 1996 Dec; 377(12):765-74. PubMed ID: 8997487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrase of Mason-Pfizer monkey virus.
    Snásel J; Krejcík Z; Jencová V; Rosenberg I; Ruml T; Alexandratos J; Gustchina A; Pichová I
    FEBS J; 2005 Jan; 272(1):203-16. PubMed ID: 15634344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retrovirus protease characterized as a dimeric aspartic proteinase.
    Katoh I; Ikawa Y; Yoshinaka Y
    J Virol; 1989 May; 63(5):2226-32. PubMed ID: 2539514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases.
    Lin YC; Beck Z; Morris GM; Olson AJ; Elder JH
    J Virol; 2003 Jun; 77(12):6589-600. PubMed ID: 12767979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro.
    Parker SD; Hunter E
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14631-6. PubMed ID: 11724937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the substrate-binding pockets of the Rous sarcoma virus and human immunodeficiency virus type 1 proteases.
    Cameron CE; Grinde B; Jacques P; Jentoft J; Leis J; Wlodawer A; Weber IT
    J Biol Chem; 1993 Jun; 268(16):11711-20. PubMed ID: 8389361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The murine endogenous retrovirus MIA14 encodes an active aspartic proteinase that is functionally similar to proteinases from D-type retroviruses.
    Strísovský K; Smrz D; Fehrmann F; Kräusslich HG; Konvalinka J
    Arch Biochem Biophys; 2002 Feb; 398(2):261-8. PubMed ID: 11831858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering proteases with altered specificity.
    Leis JP; Cameron CE
    Curr Opin Biotechnol; 1994 Aug; 5(4):403-8. PubMed ID: 7765173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.