These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 10845931)
1. p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Takemoto S; Trovato R; Cereseto A; Nicot C; Kislyakova T; Casareto L; Waldmann T; Torelli G; Franchini G Blood; 2000 Jun; 95(12):3939-44. PubMed ID: 10845931 [TBL] [Abstract][Full Text] [Related]
2. Downregulation of CDKN1A in adult T-cell leukemia/lymphoma despite overexpression of CDKN1A in human T-lymphotropic virus 1-infected cell lines. Watanabe M; Nakahata S; Hamasaki M; Saito Y; Kawano Y; Hidaka T; Yamashita K; Umeki K; Taki T; Taniwaki M; Okayama A; Morishita K J Virol; 2010 Jul; 84(14):6966-77. PubMed ID: 20444901 [TBL] [Abstract][Full Text] [Related]
3. Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Nicot C; Mahieux R; Takemoto S; Franchini G Blood; 2000 Jul; 96(1):275-81. PubMed ID: 10891462 [TBL] [Abstract][Full Text] [Related]
4. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Stott FJ; Bates S; James MC; McConnell BB; Starborg M; Brookes S; Palmero I; Ryan K; Hara E; Vousden KH; Peters G EMBO J; 1998 Sep; 17(17):5001-14. PubMed ID: 9724636 [TBL] [Abstract][Full Text] [Related]
5. Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL). Hatta Y; Koeffler HP Leukemia; 2002 Jun; 16(6):1069-85. PubMed ID: 12040438 [TBL] [Abstract][Full Text] [Related]
6. Nucleolar p14(ARF) overexpression in Reed-Sternberg cells in Hodgkin's lymphoma: absence of p14(ARF)/Hdm2 complexes is associated with expression of alternatively spliced Hdm2 transcripts. García JF; Villuendas R; Sánchez-Beato M; Sánchez-Aguilera A; Sánchez L; Prieto I; Piris MA Am J Pathol; 2002 Feb; 160(2):569-78. PubMed ID: 11839577 [TBL] [Abstract][Full Text] [Related]
7. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells. Cereseto A; Diella F; Mulloy JC; Cara A; Michieli P; Grassmann R; Franchini G; Klotman ME Blood; 1996 Sep; 88(5):1551-60. PubMed ID: 8781409 [TBL] [Abstract][Full Text] [Related]
8. [Expression of proteins in p53 (p14ARF-mdm2-p53-p21WAF/CIP1) pathway and their significance in exocrine pancreatic carcinoma]. Yu GZ; Zhu MH; Ni CR; Li FM; Zheng JM; Gong ZJ Zhonghua Bing Li Xue Za Zhi; 2004 Apr; 33(2):130-4. PubMed ID: 15132849 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional analysis of oncogenes and tumor suppressor genes in adult T-cell leukemia/lymphoma shows frequent p53 mutations. Cesarman E; Chadburn A; Inghirami G; Gaidano G; Knowles DM Blood; 1992 Dec; 80(12):3205-16. PubMed ID: 1361372 [TBL] [Abstract][Full Text] [Related]
10. p53 gene status and expression of p53, MDM2, and p14 proteins in ameloblastomas. Kumamoto H; Izutsu T; Ohki K; Takahashi N; Ooya K J Oral Pathol Med; 2004 May; 33(5):292-9. PubMed ID: 15078490 [TBL] [Abstract][Full Text] [Related]
11. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Kamijo T; Weber JD; Zambetti G; Zindy F; Roussel MF; Sherr CJ Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8292-7. PubMed ID: 9653180 [TBL] [Abstract][Full Text] [Related]
12. ARF function does not require p53 stabilization or Mdm2 relocalization. Korgaonkar C; Zhao L; Modestou M; Quelle DE Mol Cell Biol; 2002 Jan; 22(1):196-206. PubMed ID: 11739734 [TBL] [Abstract][Full Text] [Related]
13. Arsenic trioxide and the growth of human T-cell leukemia virus type I infected T-cell lines. Ishitsuka K; Hanada S; Uozumi K; Utsunomiya A; Arima T Leuk Lymphoma; 2000 May; 37(5-6):649-55. PubMed ID: 11042529 [TBL] [Abstract][Full Text] [Related]
15. Growth suppression by a p14(ARF) exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status. Saadatmandi N; Tyler T; Huang Y; Haghighi A; Frost G; Borgstrom P; Gjerset RA Cancer Gene Ther; 2002 Oct; 9(10):830-9. PubMed ID: 12224024 [TBL] [Abstract][Full Text] [Related]
16. Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells. Bae I; Fan S; Bhatia K; Kohn KW; Fornace AJ; O'Connor PM Cancer Res; 1995 Jun; 55(11):2387-93. PubMed ID: 7757991 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. Pise-Masison CA; Radonovich M; Sakaguchi K; Appella E; Brady JN J Virol; 1998 Aug; 72(8):6348-55. PubMed ID: 9658074 [TBL] [Abstract][Full Text] [Related]
18. p53 expression in CMV-infected cells: association with the alternative expression of the p53 transactivated genes p21/WAF1 and MDM2. García JF; Piris MA; Lloret E; Orradre JL; Murillo PG; Martínez JC Histopathology; 1997 Feb; 30(2):120-5. PubMed ID: 9067734 [TBL] [Abstract][Full Text] [Related]
19. Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Ohshima K; Haraoka S; Yoshioka S; Hamasaki M; Fujiki T; Suzumiya J; Kawasaki C; Kanda M; Kikuchi M Cancer Lett; 2000 Oct; 158(2):141-50. PubMed ID: 10960763 [TBL] [Abstract][Full Text] [Related]
20. In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Chin PL; Momand J; Pfeifer GP Oncogene; 1997 Jul; 15(1):87-99. PubMed ID: 9233781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]