These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10847325)

  • 1. Advances in renal development.
    Clark AT; Bertram JF
    Curr Opin Nephrol Hypertens; 2000 May; 9(3):247-51. PubMed ID: 10847325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branching morphogenesis as a driver of renal development.
    Short KM; Smyth IM
    Anat Rec (Hoboken); 2020 Oct; 303(10):2578-2587. PubMed ID: 32790143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal branching morphogenesis: morphogenetic and signaling mechanisms.
    Blake J; Rosenblum ND
    Semin Cell Dev Biol; 2014 Dec; 36():2-12. PubMed ID: 25080023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate.
    Bohnenpoll T; Bettenhausen E; Weiss AC; Foik AB; Trowe MO; Blank P; Airik R; Kispert A
    Dev Biol; 2013 Aug; 380(1):25-36. PubMed ID: 23685333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development.
    Kobayashi A; Kwan KM; Carroll TJ; McMahon AP; Mendelsohn CL; Behringer RR
    Development; 2005 Jun; 132(12):2809-23. PubMed ID: 15930111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic conversions in renal development.
    Herzlinger D; Abramson R; Cohen D
    J Cell Sci Suppl; 1993; 17():61-4. PubMed ID: 7511617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney.
    Mugford JW; Sipilä P; McMahon JA; McMahon AP
    Dev Biol; 2008 Dec; 324(1):88-98. PubMed ID: 18835385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.
    Gao X; Chen X; Taglienti M; Rumballe B; Little MH; Kreidberg JA
    Development; 2005 Dec; 132(24):5437-49. PubMed ID: 16291795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis.
    Michos O; Gonçalves A; Lopez-Rios J; Tiecke E; Naillat F; Beier K; Galli A; Vainio S; Zeller R
    Development; 2007 Jul; 134(13):2397-405. PubMed ID: 17522159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.
    Nagalakshmi VK; Yu J
    Mol Reprod Dev; 2015 Mar; 82(3):151-66. PubMed ID: 25783232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation.
    Horster MF; Braun GS; Huber SM
    Physiol Rev; 1999 Oct; 79(4):1157-91. PubMed ID: 10508232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.
    Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S
    Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2.
    Hatini V; Huh SO; Herzlinger D; Soares VC; Lai E
    Genes Dev; 1996 Jun; 10(12):1467-78. PubMed ID: 8666231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in early kidney specification, development and patterning.
    Dressler GR
    Development; 2009 Dec; 136(23):3863-74. PubMed ID: 19906853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell adhesion molecule L1 is developmentally regulated in the renal epithelium and is involved in kidney branching morphogenesis.
    Debiec H; Christensen EI; Ronco PM
    J Cell Biol; 1998 Dec; 143(7):2067-79. PubMed ID: 9864376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial-mesenchymal interactions: a fundamental Developmental Biology mechanism.
    Ribatti D; Santoiemma M
    Int J Dev Biol; 2014; 58(5):303-6. PubMed ID: 25354449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney.
    Vainio S; Lehtonen E; Jalkanen M; Bernfield M; Saxén L
    Dev Biol; 1989 Aug; 134(2):382-91. PubMed ID: 2663574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: potential applications to engineering of renal tissues.
    Rosines E; Schmidt HJ; Nigam SK
    Biomaterials; 2007 Nov; 28(32):4806-17. PubMed ID: 17706761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis.
    Müller U; Wang D; Denda S; Meneses JJ; Pedersen RA; Reichardt LF
    Cell; 1997 Mar; 88(5):603-13. PubMed ID: 9054500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphogenesis and molecular mechanisms involved in human kidney development.
    Faa G; Gerosa C; Fanni D; Monga G; Zaffanello M; Van Eyken P; Fanos V
    J Cell Physiol; 2012 Mar; 227(3):1257-68. PubMed ID: 21830217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.