BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10847572)

  • 1. A practical EMG-based human-computer interface for users with motor disabilities.
    Barreto AB; Scargle SD; Adjouadi M
    J Rehabil Res Dev; 2000; 37(1):53-63. PubMed ID: 10847572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of facial electromyography in computer mouse access for people with disabilities.
    Huang CN; Chen CH; Chung HY
    Disabil Rehabil; 2006 Feb; 28(4):231-7. PubMed ID: 16467058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convenient intelligent cursor control web systems for Internet users with severe motor-impairments.
    Surdilovic T; Zhang YQ
    Int J Med Inform; 2006 Jan; 75(1):86-100. PubMed ID: 16140571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of virtual keyboard using blink control method for the severely disabled.
    Yang SW; Lin CS; Lin SK; Lee CH
    Comput Methods Programs Biomed; 2013 Aug; 111(2):410-8. PubMed ID: 23702128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [EEG-based communication--a new concept for rehabilitative support in patients with severe motor impairment].
    Neuper C; Müller GR; Staiger-Sälzer P; Skliris D; Kübler A; Birbaumer N; Pfurtscheller G
    Rehabilitation (Stuttg); 2003 Dec; 42(6):371-7. PubMed ID: 14677109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SEMG-controlled telephone interface for people with disabilities.
    Chen YL; Lai JS; Luh JJ; Kuo TS
    J Med Eng Technol; 2002; 26(4):173-6. PubMed ID: 12396333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.
    Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J
    Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interface using a simplified functional near-infrared spectroscopy system.
    Coyle SM; Ward TE; Markham CM
    J Neural Eng; 2007 Sep; 4(3):219-26. PubMed ID: 17873424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-controlled switch for asynchronous control applications.
    Mason SG; Birch GE
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1297-307. PubMed ID: 11059164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-muscle-computer interface: mobile-phone prototype development and testing.
    Vernon S; Joshi SS
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):531-8. PubMed ID: 21571616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional cursor-to-target control from single muscle site sEMG signals.
    Perez-Maldonado C; Wexler AS; Joshi SS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):203-9. PubMed ID: 20071278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.