These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 10848569)

  • 41. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region.
    Noga BR; Kriellaars DJ; Brownstone RM; Jordan LM
    J Neurophysiol; 2003 Sep; 90(3):1464-78. PubMed ID: 12634275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X.
    Gotts J; Atkinson L; Yanagawa Y; Deuchars J; Deuchars SA
    Brain Res; 2016 Sep; 1646():570-579. PubMed ID: 27378584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.
    Yamuy J; Sampogna S; Morales FR; Chase MH
    Sleep Res Online; 1998; 1(1):28-40. PubMed ID: 11382855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord.
    Phelps PE; Vaughn JE
    J Comp Neurol; 1995 Apr; 355(1):38-50. PubMed ID: 7636012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the spinal neural network involved in coordination of micturition in the male cat.
    Grill WM; Wang B; Hadziefendic S; Haxhiu MA
    Brain Res; 1998 Jun; 796(1-2):150-60. PubMed ID: 9689465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Activity of interneurons of the lumbar region of the spinal cord during fictive locomotion of thalamic cats].
    Baev KV; Degtiarenko AM; Zavadskaia TV; Kostiuk PG
    Neirofiziologiia; 1979; 11(4):329-38. PubMed ID: 471113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry.
    Barmack NH; Baughman RW; Eckenstein FP
    J Comp Neurol; 1992 Mar; 317(3):233-49. PubMed ID: 1577998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain.
    Pombal MA; Marín O; González A
    J Comp Neurol; 2001 Feb; 431(1):105-26. PubMed ID: 11169993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capsaicin-induced effects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord.
    Pilyavskii AI; Maznychenko AV; Maisky VA; Kostyukov AI; Hellström F; Windhorst U
    Eur J Pharmacol; 2005 Oct; 521(1-3):70-8. PubMed ID: 16168409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proximal colon distention increases Fos expression in the lumbosacral spinal cord and activates sacral parasympathetic NADPHd-positive neurons in rats.
    Martínez V; Wang L; Mayer E; Taché Y
    J Comp Neurol; 1998 Jan; 390(3):311-21. PubMed ID: 9455894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spinal neurons involved in the control of the seminal vesicles: a transsynaptic labeling study using pseudorabies virus in rats.
    Sun XQ; Xu C; Leclerc P; Benoît G; Giuliano F; Droupy S
    Neuroscience; 2009 Jan; 158(2):786-97. PubMed ID: 18977414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinal cord stimulation-induced locomotion in the adult cat.
    Iwahara T; Atsuta Y; Garcia-Rill E; Skinner RD
    Brain Res Bull; 1992 Jan; 28(1):99-105. PubMed ID: 1540851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats.
    Barthélemy D; Leblond H; Provencher J; Rossignol S
    J Neurophysiol; 2006 Dec; 96(6):3273-92. PubMed ID: 16943319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.
    Rancic V; Ballanyi K; Gosgnach S
    J Neurosci; 2020 Dec; 40(50):9692-9700. PubMed ID: 33188068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord.
    Tresch MC; Kiehn O
    J Neurophysiol; 1999 Dec; 82(6):3563-74. PubMed ID: 10601482
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Movement- and behavioral state-dependent activity of pontine reticulospinal neurons.
    Thankachan S; Fuller PM; Lu J
    Neuroscience; 2012 Sep; 221():125-39. PubMed ID: 22796072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.