These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10848571)
21. Vestibular control of swimming in lamprey. III. Activity of vestibular afferents: convergence of vestibular inputs on reticulospinal neurons. Deliagina TG; Orlovsky GN; Grillner S; Wallén P Exp Brain Res; 1992; 90(3):499-507. PubMed ID: 1426110 [TBL] [Abstract][Full Text] [Related]
22. Vestibularly evoked climbing-fiber responses modulate simple spikes in rabbit cerebellar Purkinje neurons. Barmack NH; Yakhnitsa V Ann N Y Acad Sci; 2002 Dec; 978():237-54. PubMed ID: 12582057 [TBL] [Abstract][Full Text] [Related]
23. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. Gardner EP; Fuchs AF J Neurophysiol; 1975 May; 38(3):627-49. PubMed ID: 1079240 [TBL] [Abstract][Full Text] [Related]
24. Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy. Pettorossi VE; Grassi S; Errico P; Barmack NH Acta Otolaryngol Suppl; 2001; 545():155-9. PubMed ID: 11677731 [TBL] [Abstract][Full Text] [Related]
25. Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Keller EL Exp Brain Res; 1976 Mar; 24(5):459-71. PubMed ID: 1082819 [TBL] [Abstract][Full Text] [Related]
26. Responses of single neurons in the parietoinsular vestibular cortex of primates. Akbarian S; Berndl K; Grüsser OJ; Guldin W; Pause M; Schreiter U Ann N Y Acad Sci; 1988; 545():187-202. PubMed ID: 3149165 [TBL] [Abstract][Full Text] [Related]
27. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons. Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330 [TBL] [Abstract][Full Text] [Related]
28. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. Dickman JD; Angelaki DE J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465 [TBL] [Abstract][Full Text] [Related]
29. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. Kasper J; Schor RH; Wilson VJ J Neurophysiol; 1988 Nov; 60(5):1753-64. PubMed ID: 3199179 [TBL] [Abstract][Full Text] [Related]
31. Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. Schor RH; Steinbacher BC; Yates BJ J Vestib Res; 1998; 8(1):107-16. PubMed ID: 9416596 [TBL] [Abstract][Full Text] [Related]
32. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. Angelaki DE; Hess BJ J Neurophysiol; 1995 May; 73(5):1729-51. PubMed ID: 7623076 [TBL] [Abstract][Full Text] [Related]
33. GABAergic pathways convey vestibular information to the beta nucleus and dorsomedial cell column of the inferior olive. Barmack NH Ann N Y Acad Sci; 1996 Jun; 781():541-52. PubMed ID: 8694443 [No Abstract] [Full Text] [Related]
34. Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. Scudder CA; Fuchs AF J Neurophysiol; 1992 Jul; 68(1):244-64. PubMed ID: 1517823 [TBL] [Abstract][Full Text] [Related]
35. Tonic eye movements induced by bilateral and unilateral galvanic vestibular stimulation (GVS) in guinea pigs. Kim J Brain Res Bull; 2013 Jan; 90():72-8. PubMed ID: 23022577 [TBL] [Abstract][Full Text] [Related]
36. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). Grüsser OJ; Pause M; Schreiter U J Physiol; 1990 Nov; 430():537-57. PubMed ID: 2086773 [TBL] [Abstract][Full Text] [Related]
37. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. II Spatiotemporal properties of the adapted slow-phase eye velocity. Angelaki DE; Hess BJ J Neurophysiol; 1996 Nov; 76(5):2954-71. PubMed ID: 8930247 [TBL] [Abstract][Full Text] [Related]
38. Tilt responses of neurons in the caudal descending nucleus of the decerebrate cat: influence of the caudal cerebellar vermis and of neck receptors. Wilson VJ; Ikegami H; Schor RH; Thomson DB J Neurophysiol; 1996 Mar; 75(3):1242-9. PubMed ID: 8867132 [TBL] [Abstract][Full Text] [Related]
39. Otolith processing in the deep cerebellar nuclei. Büttner U; Glasauer S; Glonti L; Kleine JF; Siebold C Ann N Y Acad Sci; 1999 May; 871():81-93. PubMed ID: 10372064 [TBL] [Abstract][Full Text] [Related]
40. Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. Schor RH; Miller AD; Tomko DL J Neurophysiol; 1984 Jan; 51(1):136-46. PubMed ID: 6319622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]