These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 10848679)
1. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump. Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679 [TBL] [Abstract][Full Text] [Related]
2. Numerical analysis of blood flow in the clearance regions of a continuous flow artificial heart pump. Anderson J; Wood HG; Allaire PE; Olsen DB Artif Organs; 2000 Jun; 24(6):492-500. PubMed ID: 10886072 [TBL] [Abstract][Full Text] [Related]
3. Numerical solution for blood flow in a centrifugal ventricular assist device. Wood HG; Anderson J; Allaire PE; McDaniel JC; Bearnson G Int J Artif Organs; 1999 Dec; 22(12):827-36. PubMed ID: 10654880 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Su B; Chua LP; Lim TM; Zhou T Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393 [TBL] [Abstract][Full Text] [Related]
5. The flow patterns within the impeller passages of a centrifugal blood pump model. Yu SC; Ng BT; Chan WK; Chua LP Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249 [TBL] [Abstract][Full Text] [Related]
6. Particle image velocimetry measurements of blood velocity in a continuous flow ventricular assist device. Day SW; McDaniel JC; Wood HG; Allaire PE; Landrot N; Curtas A ASAIO J; 2001; 47(4):406-11. PubMed ID: 11482495 [TBL] [Abstract][Full Text] [Related]
7. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Wiegmann L; Boës S; de Zélicourt D; Thamsen B; Schmid Daners M; Meboldt M; Kurtcuoglu V Ann Biomed Eng; 2018 Mar; 46(3):417-428. PubMed ID: 29094293 [TBL] [Abstract][Full Text] [Related]
8. Numerical studies of blood shear and washing in a continuous flow ventricular assist device. Anderson JB; Wood HG; Allaire PE; McDaniel JC; Olsen DB; Bearnson G ASAIO J; 2000; 46(4):486-94. PubMed ID: 10926152 [TBL] [Abstract][Full Text] [Related]
9. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD). Song X; Wood HG; Olsen D J Biomech Eng; 2004 Apr; 126(2):180-7. PubMed ID: 15179847 [TBL] [Abstract][Full Text] [Related]
10. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps. Wang L; Yun Z; Tang X; Xiang C Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the washout effect in a magnetically driven axial blood pump. Triep M; Brücker C; Kerkhoffs W; Schumacher O; Marseille O Artif Organs; 2008 Oct; 32(10):778-84. PubMed ID: 18959666 [TBL] [Abstract][Full Text] [Related]
12. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391 [TBL] [Abstract][Full Text] [Related]
13. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Wu J; Paden BE; Borovetz HS; Antaki JF Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736 [TBL] [Abstract][Full Text] [Related]
14. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [TBL] [Abstract][Full Text] [Related]
15. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287 [TBL] [Abstract][Full Text] [Related]
16. Design of a small centrifugal blood pump with magnetic bearings. Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263 [TBL] [Abstract][Full Text] [Related]
17. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device. Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205 [TBL] [Abstract][Full Text] [Related]
18. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements. Day SW; McDaniel JC; Wood HG; Allaire PE; Song X; Lemire PP; Miles SD Artif Organs; 2002 Nov; 26(11):1002-5. PubMed ID: 12406161 [TBL] [Abstract][Full Text] [Related]
19. Blood flow analysis for the secondary impeller of an IVAS heart pump. Nakamura S; Ding W; Smith WA; Golding LA ASAIO J; 1997; 43(5):M773-7. PubMed ID: 9360151 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles. Song G; Chua LP; Lim TM Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]