BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10849215)

  • 1. Localization and physiological regulation of the exocytosis protein SNAP-25 in the brain and pituitary gland of Xenopus laevis.
    Kolk SM; Nordquist R; Tuinhof R; Gagliardini L; Thompson B; Cools AR; Roubos EW
    J Neuroendocrinol; 2000 Jul; 12(7):694-706. PubMed ID: 10849215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain.
    Kolk SM; Groffen AJ; Tuinhof R; Ouwens DT; Cools AR; Jenks BG; Verhage M; Roubos EW
    Neuroscience; 2004; 128(3):531-43. PubMed ID: 15381282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis.
    Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW
    Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple control and dynamic response of the Xenopus melanotrope cell.
    Kolk SM; Kramer BM; Cornelisse LN; Scheenen WJ; Jenks BG; Roubos EW
    Comp Biochem Physiol B Biochem Mol Biol; 2002 May; 132(1):257-68. PubMed ID: 11997227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis.
    Calle M; Corstens GJ; Wang L; Kozicz T; Denver RJ; Barendregt HP; Roubos EW
    Brain Res; 2005 Apr; 1040(1-2):14-28. PubMed ID: 15804422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular components of the exocytotic machinery in the rat pituitary gland.
    Jacobsson G; Meister B
    Endocrinology; 1996 Dec; 137(12):5344-56. PubMed ID: 8940356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis.
    Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG
    Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis.
    Wang LC; Meijer HK; Humbel BM; Jenks BG; Roubos EW
    J Neuroendocrinol; 2004 Jan; 16(1):19-25. PubMed ID: 14962071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-expression in Xenopus neurons and neuroendocrine cells of messenger RNA homologues of exocytosis proteins DOC2 and munc18-1.
    Berghs CA; Korteweg N; Bouteiller A; Tuinhof R; Asbreuk C; Verhage M; Roubos EW
    Neuroscience; 1999; 92(2):763-72. PubMed ID: 10408624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis.
    Roubos EW; Lázár G; Calle M; Barendregt HP; Gaszner B; Kozicz T
    J Comp Neurol; 2008 Apr; 507(4):1622-38. PubMed ID: 18220255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity.
    Roubos EW; Scheenen WJ; Jenks BG
    Ann N Y Acad Sci; 2005 Apr; 1040():172-83. PubMed ID: 15891022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis.
    van Wijk DC; Meijer KH; Roubos EW
    Gen Comp Endocrinol; 2010 Sep; 168(2):293-301. PubMed ID: 20067800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study.
    Ayoubi TA; van Duijnhoven HL; Coenen AJ; Jenks BG; Roubos EW; Martens GJ
    Cell Tissue Res; 1991 May; 264(2):329-34. PubMed ID: 1652364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis.
    Roubos EW; Berghs CA
    Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG; Kidane AH; Scheenen WJ; Roubos EW
    Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential acetylation of pro-opiomelanocortin-derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation.
    van Strien FJ; Galas L; Jenks BG; Roubos EW
    J Endocrinol; 1995 Jul; 146(1):159-67. PubMed ID: 7561613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs.
    Hepp R; Grant NJ; Aunis D; Langley K
    J Comp Neurol; 2000 Jun; 421(4):533-42. PubMed ID: 10842212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect action of elevated potassium and neuropeptide Y on alpha MSH secretion from the pars intermedia of Xenopus laevis: a biochemical and morphological study.
    de Koning HP; Jenks BG; Scheenen WJ; de Rijk EP; Caris RT; Roubos EW
    Neuroendocrinology; 1991 Jul; 54(1):68-76. PubMed ID: 1656300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis.
    Logan MR; Lacy P; Bablitz B; Moqbel R
    J Allergy Clin Immunol; 2002 Feb; 109(2):299-306. PubMed ID: 11842301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of SNAP-25 in TRH-induced exocytosis in pituitary GH4C1 cells.
    Masumoto N; Ikebuchi Y; Matsuoka T; Tasaka K; Miyake A; Murata Y
    J Endocrinol; 1997 Apr; 153(1):R5-10. PubMed ID: 9135583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.