These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 10849360)
1. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Sakamoto A; Valverde R; Alia ; Chen TH; Murata N Plant J; 2000 Jun; 22(5):449-53. PubMed ID: 10849360 [TBL] [Abstract][Full Text] [Related]
2. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Hayashi H; Alia ; Mustardy L; Deshnium P; Ida M; Murata N Plant J; 1997 Jul; 12(1):133-42. PubMed ID: 9263456 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Alia ; Hayashi H; Sakamoto A; Murata N Plant J; 1998 Oct; 16(2):155-61. PubMed ID: 9839462 [TBL] [Abstract][Full Text] [Related]
4. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Alia ; Kondo Y; Sakamoto A; Nonaka H; Hayashi H; Saradhi PP; Chen TH; Murata N Plant Mol Biol; 1999 May; 40(2):279-88. PubMed ID: 10412906 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Sakamoto A; Alia ; Murata N Plant Mol Biol; 1998 Dec; 38(6):1011-9. PubMed ID: 9869407 [TBL] [Abstract][Full Text] [Related]
6. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Park EJ; Jeknić Z; Sakamoto A; DeNoma J; Yuwansiri R; Murata N; Chen TH Plant J; 2004 Nov; 40(4):474-87. PubMed ID: 15500464 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Zhang T; Liang J; Wang M; Li D; Liu Y; Chen THH; Yang X Plant Sci; 2019 Mar; 280():355-366. PubMed ID: 30824015 [TBL] [Abstract][Full Text] [Related]
8. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Huang J; Hirji R; Adam L; Rozwadowski KL; Hammerlindl JK; Keller WA; Selvaraj G Plant Physiol; 2000 Mar; 122(3):747-56. PubMed ID: 10712538 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of glycine betaine in transplastomic potato plants expressing choline oxidase confers improved drought tolerance. You L; Song Q; Wu Y; Li S; Jiang C; Chang L; Yang X; Zhang J Planta; 2019 Jun; 249(6):1963-1975. PubMed ID: 30900084 [TBL] [Abstract][Full Text] [Related]
10. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Goel D; Singh AK; Yadav V; Babbar SB; Murata N; Bansal KC J Plant Physiol; 2011 Jul; 168(11):1286-94. PubMed ID: 21342716 [TBL] [Abstract][Full Text] [Related]
11. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Li S; Li F; Wang J; Zhang W; Meng Q; Chen TH; Murata N; Yang X Plant Cell Environ; 2011 Nov; 34(11):1931-43. PubMed ID: 21711358 [TBL] [Abstract][Full Text] [Related]
12. The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC 7942 to low temperature. Deshnium P; Gombos Z; Nishiyama Y; Murata N J Bacteriol; 1997 Jan; 179(2):339-44. PubMed ID: 8990284 [TBL] [Abstract][Full Text] [Related]
13. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Deshnium P; Los DA; Hayashi H; Mustardy L; Murata N Plant Mol Biol; 1995 Dec; 29(5):897-907. PubMed ID: 8555454 [TBL] [Abstract][Full Text] [Related]
14. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Park EJ; Jeknić Z; Pino MT; Murata N; Chen TH Plant Cell Environ; 2007 Aug; 30(8):994-1005. PubMed ID: 17617827 [TBL] [Abstract][Full Text] [Related]
15. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Yang X; Liang Z; Lu C Plant Physiol; 2005 Aug; 138(4):2299-309. PubMed ID: 16024688 [TBL] [Abstract][Full Text] [Related]
16. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Kathuria H; Giri J; Nataraja KN; Murata N; Udayakumar M; Tyagi AK Plant Biotechnol J; 2009 Aug; 7(6):512-26. PubMed ID: 19490479 [TBL] [Abstract][Full Text] [Related]
17. Comparative effects of glycinebetaine on the thermotolerance in codA- and BADH-transgenic tomato plants under high temperature stress. Zhang T; Li Z; Li D; Li C; Wei D; Li S; Liu Y; Chen THH; Yang X Plant Cell Rep; 2020 Nov; 39(11):1525-1538. PubMed ID: 32860517 [TBL] [Abstract][Full Text] [Related]
18. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Sakamoto A; Murata N J Exp Bot; 2000 Jan; 51(342):81-8. PubMed ID: 10938798 [TBL] [Abstract][Full Text] [Related]
19. Targeting prokaryotic choline oxidase into chloroplasts enhance the potential of photosynthetic machinery of plants to withstand oxidative damage. Sharmila P; Phanindra ML; Anwar F; Singh K; Gupta S; Pardha Saradhi P Plant Physiol Biochem; 2009 May; 47(5):391-6. PubMed ID: 19186067 [TBL] [Abstract][Full Text] [Related]
20. Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Ahmad R; Kim MD; Back KH; Kim HS; Lee HS; Kwon SY; Murata N; Chung WI; Kwak SS Plant Cell Rep; 2008 Apr; 27(4):687-98. PubMed ID: 18057939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]