BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10849801)

  • 21. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures.
    Saez-Miranda JC; Saliceti-Piazza L; McMillan JD
    Biotechnol Prog; 2006; 22(2):359-68. PubMed ID: 16599547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate.
    Mohagheghi A; Dowe N; Schell D; Chou YC; Eddy C; Zhang M
    Biotechnol Lett; 2004 Feb; 26(4):321-5. PubMed ID: 15055769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms.
    Zhang J; Lynd LR
    Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.
    Gyamerah M; Ampaw-Asiedu M; Mackey J; Menezes B; Woldesenbet S
    Lett Appl Microbiol; 2018 Jun; 66(6):549-557. PubMed ID: 29573262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.
    Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW
    Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.
    Wang H; Cao S; Wang WT; Wang KT; Jia X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):861-71. PubMed ID: 27033536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose.
    Sarkar P; Mukherjee M; Goswami G; Das D
    J Ind Microbiol Biotechnol; 2020 Mar; 47(3):329-341. PubMed ID: 32152759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses.
    Zhang X; Wang T; Zhou W; Jia X; Wang H
    Microb Cell Fact; 2013 May; 12():41. PubMed ID: 23635356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass.
    Dien BS; Nichols NN; O'Bryan PJ; Bothast RJ
    Appl Biochem Biotechnol; 2000; 84-86():181-96. PubMed ID: 10849788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol technology.
    Yamada T; Fatigati MA; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():899-907. PubMed ID: 12018312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase.
    Chandrakant P; Bisaria VS
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):301-9. PubMed ID: 10772470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose.
    Ohta K; Beall DS; Mejia JP; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 1991 Oct; 57(10):2810-5. PubMed ID: 1746941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose.
    Wang Z; Chen M; Xu Y; Li S; Lu W; Ping S; Zhang W; Lin M
    Biotechnol Lett; 2008 Apr; 30(4):657-63. PubMed ID: 18034308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB].
    Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.