BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10850441)

  • 1. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells.
    Yokota S; Kitahara M; Nagata K
    Cancer Res; 2000 Jun; 60(11):2942-8. PubMed ID: 10850441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells.
    Voyer J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo.
    Koishi M; Yokota S; Mae T; Nishimura Y; Kanamori S; Horii N; Shibuya K; Sasai K; Hiraoka M
    Clin Cancer Res; 2001 Jan; 7(1):215-9. PubMed ID: 11205912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the localization of heat shock protein 72 correlated with development of thermotolerance in human esophageal cancer cell line.
    Nonaka T; Akimoto T; Mitsuhashi N; Tamaki Y; Yokota S; Nakano T
    Anticancer Res; 2003; 23(6C):4677-87. PubMed ID: 14981913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of chronic thermotolerance by KNK437, a benzylidene lactam compound, enhances thermal radiosensitization in mild temperature hyperthermia combined with low dose-rate irradiation.
    Sakurai H; Kitamoto Y; Saitoh J; Nonaka T; Ishikawa H; Kiyohara H; Shioya M; Fukushima M; Akimoto T; Hasegawa M; Nakano T
    Int J Radiat Biol; 2005 Sep; 81(9):711-8. PubMed ID: 16368649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status.
    Ohnishi K; Takahashi A; Yokota S; Ohnishi T
    Int J Radiat Biol; 2004 Aug; 80(8):607-14. PubMed ID: 15370972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KNK437, a benzylidene lactam compound, sensitises prostate cancer cells to the apoptotic effect of hyperthermia.
    Sahin E; Sahin M; Sanlioğlu AD; Gümüslü S
    Int J Hyperthermia; 2011; 27(1):63-73. PubMed ID: 21204621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance.
    Young JT; Gauley J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Aug; 153(4):417-24. PubMed ID: 19358893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin.
    Guo F; Rocha K; Bali P; Pranpat M; Fiskus W; Boyapalle S; Kumaraswamy S; Balasis M; Greedy B; Armitage ES; Lawrence N; Bhalla K
    Cancer Res; 2005 Nov; 65(22):10536-44. PubMed ID: 16288046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of HSP-28 and three HSP-70 genes during the development and decay of thermotolerance in leukemic and nonleukemic human tumors.
    Mivechi NF; Monson JM; Hahn GM
    Cancer Res; 1991 Dec; 51(24):6608-14. PubMed ID: 1742734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of thermotolerance requires interaction between polymerase-beta and heat shock proteins.
    Takahashi A; Yamakawa N; Mori E; Ohnishi K; Yokota S; Sugo N; Aratani Y; Koyama H; Ohnishi T
    Cancer Sci; 2008 May; 99(5):973-8. PubMed ID: 18380790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of staurosporine on suppression of heat shock gene expression and thermotolerance development in HT-29 cells.
    Kim SH; Kim JH; Erdos G; Lee YJ
    Biochem Biophys Res Commun; 1993 Jun; 193(2):759-63. PubMed ID: 8512574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70.
    Elia G; Amici C; Rossi A; Santoro MG
    Cancer Res; 1996 Jan; 56(1):210-7. PubMed ID: 8548766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization of human Ewing's tumor cells to chemotherapy and heat treatment by the bioflavonoid quercetin.
    Debes A; Oerding M; Willers R; Göbel U; Wessalowski R
    Anticancer Res; 2003; 23(4):3359-66. PubMed ID: 12926076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of apoptosis by quercetin: involvement of heat shock protein.
    Wei YQ; Zhao X; Kariya Y; Fukata H; Teshigawara K; Uchida A
    Cancer Res; 1994 Sep; 54(18):4952-7. PubMed ID: 8069862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis.
    Wu YC; Yen WY; Lee TC; Yih LH
    Toxicol Appl Pharmacol; 2009 Apr; 236(2):231-8. PubMed ID: 19371599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock glycoprotein GP50: product of the retinoic acid-inducible J6 gene.
    Henle KJ; Wang SY; Nagle WA; Lumpkin CK
    Exp Cell Res; 1994 Feb; 210(2):185-91. PubMed ID: 8299716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.