These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10850780)

  • 1. Quantitative structure-activity relationship studies of progesterone receptor binding steroids.
    So SS; van Helden SP; van Geerestein VJ; Karplus M
    J Chem Inf Comput Sci; 2000; 40(3):762-72. PubMed ID: 10850780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors.
    So SS; Karplus M
    J Med Chem; 1996 Dec; 39(26):5246-56. PubMed ID: 8978853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4347-59. PubMed ID: 9435904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks.
    So SS; Karplus M
    J Med Chem; 1996 Mar; 39(7):1521-30. PubMed ID: 8691483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of progestin and androgen receptor binding using the CoMFA technique.
    Loughney DA; Schwender CF
    J Comput Aided Mol Des; 1992 Dec; 6(6):569-81. PubMed ID: 1291626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MTD calculations on quantitative structure-activity relationships of steroids binding to the progesterone receptor.
    Bohl M; Simon Z; Vlad A; Kaufmann G; Ponsold K
    Z Naturforsch C J Biosci; 1987; 42(7-8):935-40. PubMed ID: 2961153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative relationships between steroid structure and binding to putative progesterone receptors.
    Lee DL; Kollman PA; Marsh FJ; Wolff ME
    J Med Chem; 1977 Sep; 20(9):1139-46. PubMed ID: 926114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives.
    Mandal AS; Roy K
    Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4360-71. PubMed ID: 9435905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progesterone receptor binding of steroidal and nonsteroidal compounds.
    Neelima MS; Bhaduri AP
    Prog Drug Res; 1986; 30():151-88. PubMed ID: 3544043
    [No Abstract]   [Full Text] [Related]  

  • 12. QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor.
    Zhao CY; Zhang RS; Zhang HX; Xue CX; Liu HX; Liu MC; Hu ZD; Fan BT
    SAR QSAR Environ Res; 2005 Aug; 16(4):349-67. PubMed ID: 16234176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2008 Dec; 23(6):980-95. PubMed ID: 18608761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A-ring conformational stability and progesterone-receptor binding affinity of 4-en-3-one steroids.
    Bohl M; Kaufmann G; Hübner M; Reck G; Kretschmer RG
    J Steroid Biochem; 1985 Dec; 23(6A):895-900. PubMed ID: 4094417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: application to steroids and colchicinoids.
    Polański J
    SAR QSAR Environ Res; 2000; 11(3-4):245-61. PubMed ID: 10969874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationships (QSARs) of N-terminus fragments of NK1 tachykinin antagonists: a comparison of classical QSARs and three-dimensional QSARs from similarity matrices.
    Horwell DC; Howson W; Higginbottom M; Naylor D; Ratcliffe GS; Williams S
    J Med Chem; 1995 Oct; 38(22):4454-62. PubMed ID: 7473572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrotopological-state indices versus atomic charge and superdelocalisability indices in a QSAR study of the receptor binding properties of halogenated estradiol derivatives.
    Ghafourian T; Cronin MT
    Mol Divers; 2004; 8(4):343-55. PubMed ID: 15612638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection.
    Ghosh P; Bagchi MC
    Curr Med Chem; 2009; 16(30):4032-48. PubMed ID: 19747124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the binding affinity of aptamers against the influenza virus.
    Yu X; Wang Y; Yang H; Huang X
    SAR QSAR Environ Res; 2019 Jan; 30(1):51-62. PubMed ID: 30638061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors.
    So SS; Karplus M
    J Comput Aided Mol Des; 1999 May; 13(3):243-58. PubMed ID: 10216832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.