BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10852492)

  • 1. The Drosophila dominant wing mutation Dichaete results from ectopic expression of a Sox-domain gene.
    Russell S
    Mol Gen Genet; 2000 May; 263(4):690-701. PubMed ID: 10852492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mutations of the Drosophila Sox gene Dichaete reveal new functions in embryonic brain and hindgut development.
    Sánchez-Soriano N; Russell S
    Dev Biol; 2000 Apr; 220(2):307-21. PubMed ID: 10753518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Drosophila SOX-domain protein Dichaete is required for the development of the central nervous system midline.
    Soriano NS; Russell S
    Development; 1998 Oct; 125(20):3989-96. PubMed ID: 9735360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted patterning of vestigial expression in Drosophila wing imaginal discs requires synergistic activation by both Mad and the drifter POU domain transcription factor.
    Certel K; Hudson A; Carroll SB; Johnson WA
    Development; 2000 Jul; 127(14):3173-83. PubMed ID: 10862753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal expression and function of the Drosophila sox gene Dichaete during oogenesis.
    Mukherjee A; Melnattur KV; Zhang M; Nambu JR
    Dev Dyn; 2006 Oct; 235(10):2828-35. PubMed ID: 16894603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila HMG-domain proteins SoxNeuro and Dichaete direct trichome formation via the activation of shavenbaby and the restriction of Wingless pathway activity.
    Overton PM; Chia W; Buescher M
    Development; 2007 Aug; 134(15):2807-13. PubMed ID: 17611224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein required for embryonic segmentation.
    Russell SR; Sanchez-Soriano N; Wright CR; Ashburner M
    Development; 1996 Nov; 122(11):3669-76. PubMed ID: 8951082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless.
    Grimm S; Pflugfelder GO
    Science; 1996 Mar; 271(5255):1601-4. PubMed ID: 8599120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dTcf antagonises Wingless signalling during the development and patterning of the wing in Drosophila.
    Lawrence N; Dearden P; Hartley D; Roose J; Clevers H; Arias AM
    Int J Dev Biol; 2000 Oct; 44(7):749-56. PubMed ID: 11128568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling.
    Cho E; Irvine KD
    Development; 2004 Sep; 131(18):4489-500. PubMed ID: 15342474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporally dynamic response to Wingless directs the sequential elaboration of the proximodistal axis of the Drosophila wing.
    Whitworth AJ; Russell S
    Dev Biol; 2003 Feb; 254(2):277-88. PubMed ID: 12591247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila.
    Overton PM; Meadows LA; Urban J; Russell S
    Development; 2002 Sep; 129(18):4219-28. PubMed ID: 12183374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for scalloped and vestigial in regulating cell affinity and interactions between the wing blade and the wing hinge.
    Liu X; Grammont M; Irvine KD
    Dev Biol; 2000 Dec; 228(2):287-303. PubMed ID: 11112330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct mitogenic and cell fate specification functions of wingless in different regions of the wing.
    Neumann CJ; Cohen SM
    Development; 1996 Jun; 122(6):1781-9. PubMed ID: 8674417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying targets of the Sox domain protein Dichaete in the Drosophila CNS via targeted expression of dominant negative proteins.
    Shen SP; Aleksic J; Russell S
    BMC Dev Biol; 2013 Jan; 13():1. PubMed ID: 23289785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wingless modulates the effects of dominant negative notch molecules in the developing wing of Drosophila.
    Brennan K; Klein T; Wilder E; Arias AM
    Dev Biol; 1999 Dec; 216(1):210-29. PubMed ID: 10588873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms initiate and maintain wingless expression in the Drosophila wing hinge.
    Rodríguez Dd Ddel A; Terriente J; Galindo MI; Couso JP; Díaz-Benjumea FJ
    Development; 2002 Sep; 129(17):3995-4004. PubMed ID: 12163403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dominant vestigial alleles upon vestigial-mediated wing patterning during development of Drosophila melanogaster.
    Simmonds A; Hughes S; Tse J; Cocquyt S; Bell J
    Mech Dev; 1997 Sep; 67(1):17-33. PubMed ID: 9347912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over-expression of DREF in the Drosophila wing imaginal disc induces apoptosis and a notching wing phenotype.
    Yoshida H; Inoue YH; Hirose F; Sakaguchi K; Matsukage A; Yamaguchi M
    Genes Cells; 2001 Oct; 6(10):877-86. PubMed ID: 11683916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engrailed gene dosage determines whether certain recessive cubitus interruptus alleles exhibit dominance of the adult wing phenotype in Drosophila.
    Locke J; Hanna S
    Dev Genet; 1996; 19(4):340-9. PubMed ID: 9023986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.