These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10852865)

  • 1. Hypersensitivity of Escherichia coli Delta(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis.
    Kozmin SG; Pavlov YI; Dunn RL; Schaaper RM
    J Bacteriol; 2000 Jun; 182(12):3361-7. PubMed ID: 10852865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification.
    Kozmin SG; Stepchenkova EI; Schaaper RM
    Microbiologyopen; 2013 Oct; 2(5):743-55. PubMed ID: 23894086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of moaB mutants of Escherichia coli.
    Kozmin SG; Schaaper RM
    Res Microbiol; 2013 Sep; 164(7):689-94. PubMed ID: 23680484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli.
    Anderson LA; McNairn E; Lubke T; Pau RN; Boxer DH
    J Bacteriol; 2000 Dec; 182(24):7035-43. PubMed ID: 11092866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.
    Hasona A; Ray RM; Shanmugam KT
    J Bacteriol; 1998 Mar; 180(6):1466-72. PubMed ID: 9515915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
    Leimkühler S; Angermüller S; Schwarz G; Mendel RR; Klipp W
    J Bacteriol; 1999 Oct; 181(19):5930-9. PubMed ID: 10498704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
    Sandu C; Brandsch R
    Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair system for noncanonical purines in Escherichia coli.
    Burgis NE; Brucker JJ; Cunningham RP
    J Bacteriol; 2003 May; 185(10):3101-10. PubMed ID: 12730170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for CysJ flavin reductase in molybdenum cofactor-dependent resistance of Escherichia coli to 6-N-hydroxylaminopurine.
    Kozmin SG; Wang J; Schaaper RM
    J Bacteriol; 2010 Apr; 192(8):2026-33. PubMed ID: 20118259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mutagenesis of Salmonella tester strains due to deletion of genes other than uvrB.
    Swartz CD; Parks N; Umbach DM; Ward WO; Schaaper RM; DeMarini DM
    Environ Mol Mutagen; 2007 Oct; 48(8):694-705. PubMed ID: 17896788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants.
    Joshi MS; Johnson JL; Rajagopalan KV
    J Bacteriol; 1996 Jul; 178(14):4310-2. PubMed ID: 8763964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
    Amy NK
    J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans.
    Millar LJ; Heck IS; Sloan J; Kana'n GJ; Kinghorn JR; Unkles SE
    Mol Genet Genomics; 2001 Nov; 266(3):445-53. PubMed ID: 11713674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability.
    Rech S; Deppenmeier U; Gunsalus RP
    J Bacteriol; 1995 Feb; 177(4):1023-9. PubMed ID: 7860583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis.
    Nichols J; Rajagopalan KV
    J Biol Chem; 2002 Jul; 277(28):24995-5000. PubMed ID: 12006571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base analog N6-hydroxylaminopurine mutagenesis in Escherichia coli: genetic control and molecular specificity.
    Pavlov YI; Suslov VV; Shcherbakova PV; Kunkel TA; Ono A; Matsuda A; Schaaper RM
    Mutat Res; 1996 Oct; 357(1-2):1-15. PubMed ID: 8876675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the chlA locus of Escherichia coli K12: involvement of molybdenum cofactor.
    Baker KP; Boxer DH
    Mol Microbiol; 1991 Apr; 5(4):901-7. PubMed ID: 1906967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.
    Miller JB; Amy NK
    J Bacteriol; 1983 Aug; 155(2):793-801. PubMed ID: 6307982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.