These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10853942)

  • 1. Lateralized EEG components with direction information for the preparation of saccades versus finger movements.
    van der Lubbe RH; Wauschkuhn B; Wascher E; Niehoff T; Kömpf D; Verleger R
    Exp Brain Res; 2000 May; 132(2):163-78. PubMed ID: 10853942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralised cortical activity due to preparation of saccades and finger movements: a comparative study.
    Wauschkuhn B; Wascher E; Verleger R
    Electroencephalogr Clin Neurophysiol; 1997 Feb; 102(2):114-24. PubMed ID: 9060862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateralized human cortical activity for shifting visuospatial attention and initiating saccades.
    Wauschkuhn B; Verleger R; Wascher E; Klostermann W; Burk M; Heide W; Kömpf D
    J Neurophysiol; 1998 Dec; 80(6):2900-10. PubMed ID: 9862894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course of cross-hemispheric spatial updating in the human parietal cortex.
    Bellebaum C; Daum I
    Behav Brain Res; 2006 Apr; 169(1):150-61. PubMed ID: 16442641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refuting the hypothesis that a unilateral human parietal lesion abolishes saccade corollary discharge.
    Rath-Wilson K; Guitton D
    Brain; 2015 Dec; 138(Pt 12):3760-75. PubMed ID: 26412850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early event-related cortical activity originating in the frontal eye fields and inferior parietal lobe predicts the occurrence of correct and error saccades.
    Ptak R; Camen C; Morand S; Schnider A
    Hum Brain Mapp; 2011 Mar; 32(3):358-69. PubMed ID: 21319265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of alteration of effector and side of movement on the contingent negative variation.
    Dirnberger G; Greiner K; Duregger C; Endl W; Lindinger G; Lang W
    Clin Neurophysiol; 2003 Nov; 114(11):2018-28. PubMed ID: 14580599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal mapping of motor preparation for self-paced saccades.
    Berchicci M; Stella A; Pitzalis S; Spinelli D; Di Russo F
    Biol Psychol; 2012 Apr; 90(1):10-7. PubMed ID: 22402066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralized frontal eye field activity precedes occipital activity shortly before saccades: evidence for cortico-cortical feedback as a mechanism underlying covert attention shifts.
    Gutteling TP; van Ettinger-Veenstra HM; Kenemans JL; Neggers SF
    J Cogn Neurosci; 2010 Sep; 22(9):1931-43. PubMed ID: 19702472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-saccadic updating of visual space in the posterior parietal cortex in humans.
    Bellebaum C; Hoffmann KP; Daum I
    Behav Brain Res; 2005 Sep; 163(2):194-203. PubMed ID: 15970337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task.
    Li CS; Andersen RA
    Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography of visually evoked brain activity during eye movements: lambda waves, saccadic suppression, and discrimination performance.
    Skrandies W; Laschke K
    Int J Psychophysiol; 1997 Jul; 27(1):15-27. PubMed ID: 9161889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system.
    Russo GS; Bruce CJ
    J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements.
    Chen J; Valsecchi M; Gegenfurtner KR
    J Neurophysiol; 2016 Jul; 116(1):18-29. PubMed ID: 27009159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Event-related potentials before saccades and antisaccades and their relation to reaction time.
    Papadopoulou M; Evdokimidis I; Tsoukas E; Mantas A; Smyrnis N
    Exp Brain Res; 2010 Sep; 205(4):521-31. PubMed ID: 20711563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric asymmetries for visual and auditory temporal processing: an evoked potential study.
    Nicholls ME; Gora J; Stough CK
    Int J Psychophysiol; 2002 Apr; 44(1):37-55. PubMed ID: 11852156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.