BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10854602)

  • 1. Freezing of dendritic cells, generated from cryopreserved leukaphereses, does not influence their ability to induce antigen-specific immune responses or functionally react to maturation stimuli.
    Lewalle P; Rouas R; Lehmann F; Martiat P
    J Immunol Methods; 2000 Jun; 240(1-2):69-78. PubMed ID: 10854602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use.
    Feuerstein B; Berger TG; Maczek C; Röder C; Schreiner D; Hirsch U; Haendle I; Leisgang W; Glaser A; Kuss O; Diepgen TL; Schuler G; Schuler-Thurner B
    J Immunol Methods; 2000 Nov; 245(1-2):15-29. PubMed ID: 11042280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of immature monocyte-derived dendritic cells results in enhanced cell maturation but reduced endocytic activity and efficiency of adenoviral transduction.
    John J; Hutchinson J; Dalgleish A; Pandha H
    J Immunol Methods; 2003 Jan; 272(1-2):35-48. PubMed ID: 12505710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing and thawing of bone marrow-derived murine dendritic cells with subsequent retention of immunophenotype and of antigen processing and presentation characteristics.
    Sai T; Milling SW; Mintz B
    J Immunol Methods; 2002 Jun; 264(1-2):153-62. PubMed ID: 12191518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing and thawing of murine bone marrow-derived dendritic cells does not alter their immunophenotype and antigen presentation characteristics.
    Mendoza L; Bubeník J; Indrová M; Bieblová J; Vonka V; Símová J
    Folia Biol (Praha); 2002; 48(6):242-5. PubMed ID: 12512800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy.
    Buhl T; Legler TJ; Rosenberger A; Schardt A; Schön MP; Haenssle HA
    Cancer Immunol Immunother; 2012 Nov; 61(11):2021-31. PubMed ID: 22527251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow.
    Jin Y; Fuller L; Ciancio G; Burke GW; Tzakis AG; Ricordi C; Miller J; Esquenzai V
    Hum Immunol; 2004 Feb; 65(2):93-103. PubMed ID: 14969764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of myeloid dendritic cells (DC) pulsed with tumor-specific idiotype protein for vaccination of patients with multiple myeloma.
    Guardino AE; Rajapaksa R; Ong KH; Sheehan K; Levy R
    Cytotherapy; 2006; 8(3):277-89. PubMed ID: 16793736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation of monocytes is superior to cryopreservation of immature or semi-mature dendritic cells for dendritic cell-based immunotherapy.
    Hayden H; Friedl J; Dettke M; Sachet M; Hassler M; Dubsky P; Bachleitner-Hofmann T; Gnant M; Stift A
    J Immunother; 2009; 32(6):638-54. PubMed ID: 19483645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration in vitro of impaired T-cell responses in patients with chronic hepatitis B by autologous dendritic cells loaded with hepatitis B virus proteins (R2).
    Duan XZ; He HX; Zhuang H
    J Gastroenterol Hepatol; 2006 Jun; 21(6):970-6. PubMed ID: 16724980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental study on cryopreservation of immature dendritic cells derived from cord blood].
    Wang YT; Peng YZ; Tang J; Wang Q; Wang YQ; You B
    Zhonghua Shao Shang Za Zhi; 2006 Dec; 22(6):423-6. PubMed ID: 17438686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma.
    Loveland BE; Zhao A; White S; Gan H; Hamilton K; Xing PX; Pietersz GA; Apostolopoulos V; Vaughan H; Karanikas V; Kyriakou P; McKenzie IF; Mitchell PL
    Clin Cancer Res; 2006 Feb; 12(3 Pt 1):869-77. PubMed ID: 16467101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70.
    Zobywalski A; Javorovic M; Frankenberger B; Pohla H; Kremmer E; Bigalke I; Schendel DJ
    J Transl Med; 2007 Apr; 5():18. PubMed ID: 17430585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenoviral transduction of human 'clinical grade' immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity.
    Rouard H; Léon A; Klonjkowski B; Marquet J; Tennezé L; Plonquet A; Agrawal SG; Abastado JP; Eloit M; Farcet JP; Delfau-Larue MH
    J Immunol Methods; 2000 Jul; 241(1-2):69-81. PubMed ID: 10915850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines.
    Michiels A; Tuyaerts S; Bonehill A; Corthals J; Breckpot K; Heirman C; Van Meirvenne S; Dullaers M; Allard S; Brasseur F; van der Bruggen P; Thielemans K
    Gene Ther; 2005 May; 12(9):772-82. PubMed ID: 15750615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigen loading of dendritic cells with whole tumor cell preparations.
    Thumann P; Moc I; Humrich J; Berger TG; Schultz ES; Schuler G; Jenne L
    J Immunol Methods; 2003 Jun; 277(1-2):1-16. PubMed ID: 12799035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell-tumour hybrids in B-CLL.
    Kokhaei P; Rezvany MR; Virving L; Choudhury A; Rabbani H; Osterborg A; Mellstedt H
    Leukemia; 2003 May; 17(5):894-9. PubMed ID: 12750703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation.
    Ponsaerts P; Van Tendeloo VF; Cools N; Van Driessche A; Lardon F; Nijs G; Lenjou M; Mertens G; Van Broeckhoven C; Van Bockstaele DR; Berneman ZN
    Leukemia; 2002 Jul; 16(7):1324-30. PubMed ID: 12094257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for antigen choice and priming of dendritic cells influence the polarization and efficacy of antitumor T-cell responses in dendritic cell-based cancer vaccination.
    Galea-Lauri J; Wells JW; Darling D; Harrison P; Farzaneh F
    Cancer Immunol Immunother; 2004 Nov; 53(11):963-77. PubMed ID: 15146294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of mature monocyte-derived human dendritic cells for vaccination: influence on phenotype and functional properties.
    Westermann J; Körner IJ; Kopp J; Kurz S; Zenke M; Dörken B; Pezzutto A
    Cancer Immunol Immunother; 2003 Mar; 52(3):194-8. PubMed ID: 12649749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.