These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10854879)

  • 1. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament.
    Hirokawa S; Tsuruno R
    J Biomech; 2000 Sep; 33(9):1069-77. PubMed ID: 10854879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation.
    Song Y; Debski RE; Musahl V; Thomas M; Woo SL
    J Biomech; 2004 Mar; 37(3):383-90. PubMed ID: 14757458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament.
    Xie F; Yang L; Guo L; Wang ZJ; Dai G
    J Biomech Eng; 2009 Dec; 131(12):121007. PubMed ID: 20524730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A photoelastic study of ligament strain.
    Hirokawa S; Yamamoto K; Kawada T
    IEEE Trans Rehabil Eng; 1998 Sep; 6(3):300-8. PubMed ID: 9749907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of Knee Joints after Anterior Cruciate Ligament Reconstruction.
    He C; He W; Li Y; Wang F; Tong L; Zhang Z; Jia D; Wang G; Zheng J; Chen G
    J Knee Surg; 2018 Apr; 31(4):352-358. PubMed ID: 28666291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL.
    Limbert G; Taylor M; Middleton J
    J Biomech; 2004 Nov; 37(11):1723-31. PubMed ID: 15388315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical model of the knee and ACL: theory and experimental verification.
    Loch DA; Luo ZP; Lewis JL; Stewart NJ
    J Biomech; 1992 Jan; 25(1):81-90. PubMed ID: 1733986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-elastic model analysis of anterior cruciate ligament.
    Hirokawa S; Tsuruno R
    Med Eng Phys; 1997 Oct; 19(7):637-51. PubMed ID: 9457697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion.
    Moglo KE; Shirazi-Adl A
    J Biomech; 2005 May; 38(5):1075-83. PubMed ID: 15797589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A subject-specific finite element model of the anterior cruciate ligament.
    Zhang X; Jiang G; Wu C; Woo SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():891-4. PubMed ID: 19162800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ; Lujan TJ; Dalton MS; Weiss JA
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical simulation of anterior cruciate ligament strain for sports injury prevention.
    Zhang Y; Liu G; Xie SQ
    Comput Biol Med; 2011 Mar; 41(3):159-63. PubMed ID: 21292250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis.
    Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH
    J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of reaction forces on the anterior cruciate and anterolateral ligaments during internal rotation and anterior drawer forces at different flexion angles of the knee joint.
    Uğur L
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28251769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-insertional distance is a poor correlate for ligament load: analysis from in vivo gait kinetics data.
    Atarod M; Rosvold JM; Kazemi M; Li L; Frank CB; Shrive NG
    J Biomech; 2013 Sep; 46(13):2264-70. PubMed ID: 23871234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional finite element analysis of the influence of posterior tibial slope on the anterior cruciate ligament and knee joint forward stability.
    Qi Y; Sun H; Fan Y; Li F; Wang Y; Ge C
    J Back Musculoskelet Rehabil; 2018; 31(4):629-636. PubMed ID: 29614621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.