These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 10855495)

  • 1. Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes.
    Smith AV; Roeder GS
    Chromosoma; 2000; 109(1-2):50-61. PubMed ID: 10855495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis.
    Voelkel-Meiman K; Johnston C; Thappeta Y; Subramanian VV; Hochwagen A; MacQueen AJ
    PLoS Genet; 2015 Jun; 11(6):e1005335. PubMed ID: 26114667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast Red1 protein localizes to the cores of meiotic chromosomes.
    Smith AV; Roeder GS
    J Cell Biol; 1997 Mar; 136(5):957-67. PubMed ID: 9060462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104.
    Hollingsworth NM; Johnson AD
    Genetics; 1993 Apr; 133(4):785-97. PubMed ID: 8462842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae.
    Hollingsworth NM; Ponte L
    Genetics; 1997 Sep; 147(1):33-42. PubMed ID: 9286666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kshirsagar R; Ghodke I; Muniyappa K
    J Biol Chem; 2017 Aug; 292(33):13853-13866. PubMed ID: 28642366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed.
    Toikkanen JH; Sundqvist L; Keränen S
    Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis.
    Friedman DB; Hollingsworth NM; Byers B
    Genetics; 1994 Feb; 136(2):449-64. PubMed ID: 8150275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis.
    Haw R; Devi Yarragudi A; Uemura H
    Yeast; 2001 Jun; 18(8):729-35. PubMed ID: 11378900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis.
    Aström SU; Rine J
    Genetics; 1998 Mar; 148(3):1021-9. PubMed ID: 9539421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence conservation in the Saccharomyces and Kluveromyces GAL11 transcription activators suggests functional domains.
    Mylin LM; Gerardot CJ; Hopper JE; Dickson RC
    Nucleic Acids Res; 1991 Oct; 19(19):5345-50. PubMed ID: 1923818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae.
    Mao-Draayer Y; Galbraith AM; Pittman DL; Cool M; Malone RE
    Genetics; 1996 Sep; 144(1):71-86. PubMed ID: 8878674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The KlSRB10 gene from Kluyveromyces lactis.
    Núñez L; Fernández-Otero C; Rodríguez-Belmonte E; Cerdán ME
    Yeast; 2004 Apr; 21(6):511-8. PubMed ID: 15116433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis.
    Heinisch J; Kirchrath L; Liesen T; Vogelsang K; Hollenberg CP
    Mol Microbiol; 1993 May; 8(3):559-70. PubMed ID: 8326866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and functional analysis of a Kluyveromyces lactis homologue of the SPT4 gene of Saccharomyces cerevisiae.
    Hikkel I; Gbelská Y; Subík J
    Curr Genet; 1998 Dec; 34(5):375-8. PubMed ID: 9871119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sir2 mutants of Kluyveromyces lactis are hypersensitive to DNA-targeting drugs.
    Chen XJ; Clark-Walker GD
    Mol Cell Biol; 1994 Jul; 14(7):4501-8. PubMed ID: 8007956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; de Steensma HY; van den Berg JA
    Mol Gen Genet; 1993 Jan; 236(2-3):355-62. PubMed ID: 8437580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kluyveromyces contains a functional ABF1-homologue.
    Gonçalves PM; Maurer K; Mager WH; Planta RJ
    Nucleic Acids Res; 1992 May; 20(9):2211-5. PubMed ID: 1594441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.