These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1085569)

  • 1. Mitochondria-rich cells of frog skin in transport mechanisms: morphological and kinetic studies on transepithelial excretion of methylene blue.
    Ehrenfeld J; Masoni A; Garcia-Romeu F
    Am J Physiol; 1976 Jul; 231(1):120-6. PubMed ID: 1085569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of mitochondria-rich cells in sodium transport across amphibian skin.
    Nagel W; Dörge A
    Pflugers Arch; 1996; 433(1-2):146-52. PubMed ID: 9019715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active urea transport independent of H+ and Na+ transport in frog skin epithelium.
    Lacoste I; Dunel-Erb S; Harvey BJ; Laurent P; Ehrenfeld J
    Am J Physiol; 1991 Oct; 261(4 Pt 2):R898-906. PubMed ID: 1833990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of mitochondria-rich cells in transepithelial sodium and chloride transport in amphibian skins.
    Dörge A; Nagel W; Beck FX; Rick R; Thurau K
    J Basic Clin Physiol Pharmacol; 1990; 1(1-4):339-48. PubMed ID: 2085524
    [No Abstract]   [Full Text] [Related]  

  • 5. Transepithelial transport of sodium and chloride ions in isolated skin of the frog, Rana esculenta L.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2002; 50(3-4):107-14. PubMed ID: 12729155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells.
    Rick R
    J Membr Biol; 1992 May; 127(3):227-36. PubMed ID: 1495088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride transport through the n onshort-circuited isolated skin of Rana esculenta.
    Garcia-Romeu F; Ehrenfeld J
    Am J Physiol; 1975 Mar; 228(3):845-9. PubMed ID: 1078757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo Na+- and Cl minus-independent transport across the skin of Rana esculenta.
    Garcia-Romeu F; Ehrenfeld J
    Am J Physiol; 1975 Mar; 228(3):839-44. PubMed ID: 234692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondria-rich cell of frog skin as hormone-sensitive "shunt-path".
    Voûte CL; Meier W
    J Membr Biol; 1978; 40 Spec No():151-65. PubMed ID: 215770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 11. Correlation between chloride flux via the mitochondria-rich cells and transepithelial water movement in isolated frog skin (Rana esculenta).
    Nielsen R
    Acta Physiol Scand; 1995 Dec; 155(4):351-61. PubMed ID: 8719255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amiloride on electrolyte concentrations and rubidium uptake in principal and mitochondria-rich cells of frog skin.
    Dörge A; Beck FX; Rick R; Nagel W; Thurau K
    Pflugers Arch; 1990 May; 416(3):335-8. PubMed ID: 2166276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium.
    Ehrenfeld J; Lacoste I; Harvey BJ
    Pflugers Arch; 1989 May; 414(1):59-67. PubMed ID: 2786188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between chloride absorption and base excretion in isolated skin of Rana esculenta.
    Ehrenfeld J; Garcia-Romeu F
    Am J Physiol; 1978 Jul; 235(1):F33-9. PubMed ID: 307916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings: Changes in oxygen consumption by the isolated frog skin as a function of the method of inhibition of transepithelial sodium transport.
    Crabbé J; Michotte A; Noe G
    J Physiol; 1974 Oct; 242(2):87P-88P. PubMed ID: 4549075
    [No Abstract]   [Full Text] [Related]  

  • 17. Isotonic secretion via frog skin glands in vitro. Water secretion is coupled to the secretion of sodium ions.
    Nielsen R
    Acta Physiol Scand; 1990 May; 139(1):211-21. PubMed ID: 2356751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of epithelial ion transport by X-ray microanalysis.
    Rick R; Dörge A; Beck FX; Thurau K
    Scan Electron Microsc; 1983; (Pt 2):801-8. PubMed ID: 6605576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of harmaline on sodium transport in Rana esculenta skin.
    Ehrenfeld J; Garcia-Romeu F
    Br J Pharmacol; 1977 Jan; 59(1):115-21. PubMed ID: 300035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active hydrogen excretion and sodium absorption through isolated frog skin.
    Ehrenfeld J; Garcia-Romeu F
    Am J Physiol; 1977 Jul; 233(1):F46-54. PubMed ID: 301706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.