BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10855708)

  • 21. Functional analysis of cis-aconitate decarboxylase and trans-aconitate metabolism in riboflavin-producing filamentous Ashbya gossypii.
    Sugimoto T; Kato T; Park EY
    J Biosci Bioeng; 2014 May; 117(5):563-8. PubMed ID: 24315530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.
    Ledesma-Amaro R; Serrano-Amatriain C; Jiménez A; Revuelta JL
    Microb Cell Fact; 2015 Oct; 14():163. PubMed ID: 26463172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production.
    Sugimoto T; Morimoto A; Nariyama M; Kato T; Park EY
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):57-64. PubMed ID: 19826846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications.
    Aguiar TQ; Silva R; Domingues L
    Biotechnol Adv; 2015 Dec; 33(8):1774-86. PubMed ID: 26456510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.
    Abbas CA; Sibirny AA
    Microbiol Mol Biol Rev; 2011 Jun; 75(2):321-60. PubMed ID: 21646432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology.
    Park EY; Zhang JH; Tajima S; Dwiarti L
    J Appl Microbiol; 2007 Aug; 103(2):468-76. PubMed ID: 17650208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering].
    Ishchuk OP; Iatsyshyn VIu; Dmytruk KV; Voronovs'kyĭ AIa; Fedorovych DV; Sybirnyĭ AA
    Ukr Biokhim Zh (1999); 2006; 78(5):63-9. PubMed ID: 17290783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.
    Dmytruk K; Lyzak O; Yatsyshyn V; Kluz M; Sibirny V; Puchalski C; Sibirny A
    J Biotechnol; 2014 Feb; 172():11-7. PubMed ID: 24361297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome scale metabolic modeling of the riboflavin overproducer Ashbya gossypii.
    Ledesma-Amaro R; Kerkhoven EJ; Revuelta JL; Nielsen J
    Biotechnol Bioeng; 2014 Jun; 111(6):1191-9. PubMed ID: 24374726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.
    Jeong BY; Wittmann C; Kato T; Park EY
    J Biosci Bioeng; 2015 Jan; 119(1):101-6. PubMed ID: 25128926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Ashbya gossypii for efficient biolipid production.
    Ledesma-Amaro R; Lozano-Martínez P; Jiménez A; Revuelta JL
    Bioengineered; 2015; 6(2):119-23. PubMed ID: 25625436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture of Ashbya gossypii.
    Ming H; Lara Pizarro AV; Park EY
    Biotechnol Prog; 2003; 19(2):410-7. PubMed ID: 12675581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ashbya gossypii: a model for fungal developmental biology.
    Wendland J; Walther A
    Nat Rev Microbiol; 2005 May; 3(5):421-9. PubMed ID: 15821727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis.
    Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Kshanovska BV; Sybirna KA; Gaillardin C; Sibirny AA
    Yeast; 2004 Nov; 21(15):1307-16. PubMed ID: 15543522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A genome-wide transcription analysis of a fungal riboflavin overproducer.
    Karos M; Vilariño C; Bollschweiler C; Revuelta JL
    J Biotechnol; 2004 Sep; 113(1-3):69-76. PubMed ID: 15380648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light.
    Stahmann KP; Arst HN; Althöfer H; Revuelta JL; Monschau N; Schlüpen C; Gätgens C; Wiesenburg A; Schlösser T
    Environ Microbiol; 2001 Sep; 3(9):545-50. PubMed ID: 11683864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.