These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1085580)

  • 1. The role of lactic acid in retinal neovascularization.
    Gerke E; Spitznas M; Brodde OE
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Jul; 200(1):79-84. PubMed ID: 1085580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of subretinal injection on retinal structure and function in a rat oxygen-induced retinopathy model.
    Becker S; Wang H; Stoddard GJ; Hartnett ME
    Mol Vis; 2017; 23():832-843. PubMed ID: 29259390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal oxygen tension and oxygen reactivity in retinopathy of prematurity in kittens.
    Ernest JT; Goldstick TK
    Invest Ophthalmol Vis Sci; 1984 Oct; 25(10):1129-34. PubMed ID: 6207136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal hypoxia in long-term diabetic cats.
    Linsenmeier RA; Braun RD; McRipley MA; Padnick LB; Ahmed J; Hatchell DL; McLeod DS; Lutty GA
    Invest Ophthalmol Vis Sci; 1998 Aug; 39(9):1647-57. PubMed ID: 9699554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to the problem of retinal neovascularization.
    Patz A; Brem S; Finkelstein D; Chen CH; Lutty G; Bennett A; Coughlin WR; Gardner J
    Ophthalmology; 1978 Jun; 85(6):626-37. PubMed ID: 580956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity.
    Zhang W; Ito Y; Berlin E; Roberts R; Berkowitz BA
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3119-23. PubMed ID: 12824260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.
    Wu YC; Chang CY; Kao A; Hsi B; Lee SH; Chen YH; Wang IJ
    PLoS One; 2015; 10(5):e0126750. PubMed ID: 25978439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations on retinal neovascularization.
    Patz A
    Trans New Orleans Acad Ophthalmol; 1983; 31():82-8. PubMed ID: 6194596
    [No Abstract]   [Full Text] [Related]  

  • 9. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy.
    Chen J; Connor KM; Aderman CM; Willett KL; Aspegren OP; Smith LE
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1329-35. PubMed ID: 18952918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase.
    Tawfik A; Sanders T; Kahook K; Akeel S; Elmarakby A; Al-Shabrawey M
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):878-84. PubMed ID: 18806296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal and vitreal neovascularization in retinopathy of prematurity. A scanning electron microscopic study in the kitten.
    Yoneya S; Tso MO
    Arch Ophthalmol; 1991 Dec; 109(12):1744-51. PubMed ID: 1726774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and experimental studies on retinal neovascularization. XXXIX Edward Jackson Memorial Lecture.
    Patz A
    Am J Ophthalmol; 1982 Dec; 94(6):715-43. PubMed ID: 6184997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-rich 61, a member of the CCN family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy.
    You JJ; Yang CH; Chen MS; Yang CM
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3447-55. PubMed ID: 19264885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.
    Le YZ
    Vision Res; 2017 Oct; 139():108-114. PubMed ID: 28601428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental studies on the pathogenesis of retinopathy of prematurity.
    Prost M
    Br J Ophthalmol; 1988 May; 72(5):363-7. PubMed ID: 2456093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.
    Aiello LP; Avery RL; Arrigg PG; Keyt BA; Jampel HD; Shah ST; Pasquale LR; Thieme H; Iwamoto MA; Park JE
    N Engl J Med; 1994 Dec; 331(22):1480-7. PubMed ID: 7526212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of insulin-like growth factor I in the development of diabetic retinopathy].
    Gacka M; Adamiec J
    Przegl Lek; 2003; 60(9):588-92. PubMed ID: 15065339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STUDIES ON THE MECHANISM OF RETINAL NEOVASCULARIZATION. ROLE OF LACTIC ACID.
    IMRE G
    Br J Ophthalmol; 1964 Feb; 48(2):75-82. PubMed ID: 14189746
    [No Abstract]   [Full Text] [Related]  

  • 19. Mapping retinal fluorescein leakage with confocal scanning laser fluorometry of the human vitreous.
    Lobo CL; Bernardes RC; Santos FJ; Cunha-Vaz JG
    Arch Ophthalmol; 1999 May; 117(5):631-7. PubMed ID: 10326960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the retinal pigment epithelium and Müller cells secretome in neovascular retinal pathologies.
    Araújo RS; Santos DF; Silva GA
    Biochimie; 2018 Dec; 155():104-108. PubMed ID: 29960032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.