These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 10856219)

  • 1. A single-molecule study of RNA catalysis and folding.
    Zhuang X; Bartley LE; Babcock HP; Russell R; Ha T; Herschlag D; Chu S
    Science; 2000 Jun; 288(5473):2048-51. PubMed ID: 10856219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing RNA folding rates: a balancing act.
    Thirumalai D; Woodson SA
    RNA; 2000 Jun; 6(6):790-4. PubMed ID: 10864039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme.
    Uchida T; Takamoto K; He Q; Chance MR; Brenowitz M
    J Mol Biol; 2003 Apr; 328(2):463-78. PubMed ID: 12691754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding.
    Laederach A; Shcherbakova I; Jonikas MA; Altman RB; Brenowitz M
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7045-50. PubMed ID: 17438287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA.
    Bartley LE; Zhuang X; Das R; Chu S; Herschlag D
    J Mol Biol; 2003 May; 328(5):1011-26. PubMed ID: 12729738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concordant exploration of the kinetics of RNA folding from global and local perspectives.
    Kwok LW; Shcherbakova I; Lamb JS; Park HY; Andresen K; Smith H; Brenowitz M; Pollack L
    J Mol Biol; 2006 Jan; 355(2):282-93. PubMed ID: 16303138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule.
    Laederach A; Shcherbakova I; Liang MP; Brenowitz M; Altman RB
    J Mol Biol; 2006 May; 358(4):1179-90. PubMed ID: 16574145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbed folding kinetics of circularly permuted RNAs with altered topology.
    Heilman-Miller SL; Woodson SA
    J Mol Biol; 2003 Apr; 328(2):385-94. PubMed ID: 12691747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribozyme structures and mechanisms.
    Doherty EA; Doudna JA
    Annu Rev Biochem; 2000; 69():597-615. PubMed ID: 10966470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic intermediates in RNA folding.
    Zarrinkar PP; Williamson JR
    Science; 1994 Aug; 265(5174):918-24. PubMed ID: 8052848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.