These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 10856219)

  • 21. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mg2+-dependent folding of a large ribozyme without kinetic traps.
    Fang XW; Pan T; Sosnick TR
    Nat Struct Biol; 1999 Dec; 6(12):1091-5. PubMed ID: 10581546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two major tertiary folding transitions of the Tetrahymena catalytic RNA.
    Laggerbauer B; Murphy FL; Cech TR
    EMBO J; 1994 Jun; 13(11):2669-76. PubMed ID: 8013466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme.
    Bevilacqua PC; Li Y; Turner DH
    Biochemistry; 1994 Sep; 33(37):11340-8. PubMed ID: 7727385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure.
    Shcherbakova I; Brenowitz M
    J Mol Biol; 2005 Nov; 354(2):483-96. PubMed ID: 16242711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 2001 Mar; 493(2-3):95-100. PubMed ID: 11287003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid.
    Chaulk SG; MacMillan AM
    Biochemistry; 2000 Jan; 39(1):2-8. PubMed ID: 10625473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of a group I ribozyme domain: principles of RNA packing.
    Cate JH; Gooding AR; Podell E; Zhou K; Golden BL; Kundrot CE; Cech TR; Doudna JA
    Science; 1996 Sep; 273(5282):1678-85. PubMed ID: 8781224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlating structural dynamics and function in single ribozyme molecules.
    Zhuang X; Kim H; Pereira MJ; Babcock HP; Walter NG; Chu S
    Science; 2002 May; 296(5572):1473-6. PubMed ID: 12029135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualizing the higher order folding of a catalytic RNA molecule.
    Celander DW; Cech TR
    Science; 1991 Jan; 251(4992):401-7. PubMed ID: 1989074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The parallel universe of RNA folding.
    Batey RT; Doudna JA
    Nat Struct Biol; 1998 May; 5(5):337-40. PubMed ID: 9586989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Movement of the guide sequence during RNA catalysis by a group I ribozyme.
    Wang JF; Downs WD; Cech TR
    Science; 1993 Apr; 260(5107):504-8. PubMed ID: 7682726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow folding kinetics of RNase P RNA.
    Zarrinkar PP; Wang J; Williamson JR
    RNA; 1996 Jun; 2(6):564-73. PubMed ID: 8718685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A preorganized active site in the crystal structure of the Tetrahymena ribozyme.
    Golden BL; Gooding AR; Podell ER; Cech TR
    Science; 1998 Oct; 282(5387):259-64. PubMed ID: 9841391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods.
    Bevilacqua PC; Kierzek R; Johnson KA; Turner DH
    Science; 1992 Nov; 258(5086):1355-8. PubMed ID: 1455230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mispaired P3 region in the hierarchical folding pathway of the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    Genes Cells; 2002 Aug; 7(8):851-60. PubMed ID: 12167162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.