These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10856330)

  • 21. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis.
    Ray S; Banerjee A
    J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Cometabolic transformation of high concentrations of 4-chlorophenol in an immobilized cell hollow fiber membrane bioreactor].
    Li Y; Lei HB
    Huan Jing Ke Xue; 2009 Oct; 30(10):3007-10. PubMed ID: 19968122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor.
    Baumann MD; Daugulis AJ; Jessop PG
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):131-7. PubMed ID: 15549289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture.
    Reardon KF; Kim KH
    Electrophoresis; 2002 Jul; 23(14):2233-41. PubMed ID: 12210227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida.
    Margesin R; Bergauer P; Gander S
    Extremophiles; 2004 Jun; 8(3):201-7. PubMed ID: 14872323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer.
    Amsden BG; Bochanysz J; Daugulis AJ
    Biotechnol Bioeng; 2003 Nov; 84(4):399-405. PubMed ID: 14574696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model.
    Lovanh N; Alvarez PJ
    Biotechnol Bioeng; 2004 Jun; 86(7):801-8. PubMed ID: 15162456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process development for degradation of phenol by Pseudomonas putida in hollow-fiber membrane bioreactors.
    Chung TP; Wu PC; Juang RS
    Biotechnol Bioeng; 2004 Jul; 87(2):219-27. PubMed ID: 15236251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida.
    González BG; Herrera TG
    Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.
    Kumar P; Nemati M; Hill GA
    Biodegradation; 2011 Nov; 22(6):1087-93. PubMed ID: 21380603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulated Pseudomonas putida for phenol biodegradation: Use of a structural membrane for construction of a well-organized confined particle.
    Kurzbaum E; Raizner Y; Cohen O; Suckeveriene RY; Kulikov A; Hakimi B; Iasur Kruh L; Armon R; Farber Y; Menashe O
    Water Res; 2017 Sep; 121():37-45. PubMed ID: 28505532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The isolation of microorganisms capable of phenol degradation.
    Przybulewska K; Wieczorek A; Nowak A; Pochrzaszcz M
    Pol J Microbiol; 2006; 55(1):63-7. PubMed ID: 16878606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365.
    Tsai SY; Juang RS
    J Hazard Mater; 2006 Nov; 138(1):125-32. PubMed ID: 16806688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth kinetics of Pseudomonas putida in cometabolism of phenol and 4-chlorophenol in the presence of a conventional carbon source.
    Wang SJ; Loh KC
    Biotechnol Bioeng; 2000 May; 68(4):437-47. PubMed ID: 10745212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioremediation of phenol by a novel partitioning bioreactor using cow dung microbial consortia.
    Singh D; Fulekar MH
    Biotechnol J; 2009 Mar; 4(3):423-31. PubMed ID: 19296450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni.
    Tobajas M; Monsalvo VM; Mohedano AF; Rodriguez JJ
    J Environ Manage; 2012 Mar; 95 Suppl():S116-21. PubMed ID: 20970917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy.
    Kurbatov L; Albrecht D; Herrmann H; Petruschka L
    Environ Microbiol; 2006 Mar; 8(3):466-78. PubMed ID: 16478453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1.
    Kim MK; Singleton I; Yin CR; Quan ZX; Lee M; Lee ST
    Lett Appl Microbiol; 2006 May; 42(5):495-500. PubMed ID: 16620209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.