BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1085641)

  • 1. Phospholipid metabolism of stimulated lymphocytes. Comparison of the activation of acyl-CoA:lysolecithin acyltransferase with the binding of concanavalin A to thymocytes.
    Ferber E; Reilly CE; Resch K
    Biochim Biophys Acta; 1976 Sep; 448(1):143-54. PubMed ID: 1085641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of acyltransferase in lymphocytes by concanavalin A.
    Dobson P; Mellors A
    Biochim Biophys Acta; 1980 May; 629(2):305-16. PubMed ID: 7388037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interrelationship between (Na+ + K+)-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes.
    Szamel M; Schneider S; Resch K
    J Biol Chem; 1981 Sep; 256(17):9198-204. PubMed ID: 6267065
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of temperature on stability and activity of lysolecithin acyltransferase and acyl-CoA hydrolase from rabbit lung.
    Estrada P; Acebal C; Bauluz C; Casals C; Arche R
    Biochem Int; 1984 Mar; 8(3):339-46. PubMed ID: 6148083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate selectivity of acyl-CoA:lysolecithin acyltransferase from rabbit lung.
    Estrada P; Acebal C; Arche R
    Mol Cell Biochem; 1985 Nov; 69(1):49-54. PubMed ID: 4079918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of albumin on acyl-CoA: lysolecithin acyltransferase, lysolecithin: lysolecithin acyltransferase and acyl-CoA hydrolase from rabbit lung.
    Pérez-Gil J; Estrada P; Acebal C; Arche R
    Mol Cell Biochem; 1990 May; 94(2):167-73. PubMed ID: 1973820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional mosaicism of the lymphocyte plasma membrane. II. Characterization of membrane subfractions of activated thymocytes.
    Rode HN; Mähler B; Loracher A; Resch K
    Eur J Immunol; 1979 May; 9(5):402-8. PubMed ID: 158534
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of T lymphocyte activation by cyclosporin A: interference with the early activation of plasma membrane phospholipid metabolism.
    Szamel M; Berger P; Resch K
    J Immunol; 1986 Jan; 136(1):264-9. PubMed ID: 2415622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acyltransferase activity of adrenal medulla and sacroplasmic reticulum of skeletal muscles.
    Khan AR; Balzer H
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 291(4):335-45. PubMed ID: 1207783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of a lymphocyte membrane enzyme by delta9-tetrahydrocannabinol in vitro.
    Greenberg JH; Saunders ME; Mellors A
    Science; 1977 Jul; 197(4302):475-7. PubMed ID: 877571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid metabolism of stimulated lymphocytes: activation of acyl-CoA:lysolecithin acyltransferases in microsomal membranes.
    Ferber E; Resch K
    Biochim Biophys Acta; 1973 Feb; 296(2):335-49. PubMed ID: 4688438
    [No Abstract]   [Full Text] [Related]  

  • 12. Phospholipid metabolism in rat submandibular gland. Positional distribution of fatty acids in phosphatidylcholine and microsomal lysophospholipid acyltransferase systems concerning proliferation.
    Yashiro K; Kameyama Y; Mizuno M; Hayashi S; Sakashita Y; Yokota Y
    Biochim Biophys Acta; 1989 Sep; 1005(1):56-64. PubMed ID: 2775762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessibility of lysolecithin in catecholamine secretory vesicles to acyl CoA:lysolecithin acyl transferase.
    Voyta JC; Slakey LL; Westhead EW
    Biochem Biophys Res Commun; 1978 Jan; 80(2):413-7. PubMed ID: 623669
    [No Abstract]   [Full Text] [Related]  

  • 14. Phospholipid metabolism of stimulated lymphocytes. Composition of phospholipid fatty acids.
    Ferber E; De Pasquale GG; Resch K
    Biochim Biophys Acta; 1975 Sep; 398(3):364-76. PubMed ID: 1100108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysolecithin acyltransferase and lysolecithin: lysolecithin acyltransferase in adult rat lung alveolar type II epithelial cells.
    Batenburg JJ; Longmore WJ; Klazinga W; van Golde LM
    Biochim Biophys Acta; 1979 Apr; 573(1):136-44. PubMed ID: 582286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of functional domains of the lymphocyte plasma membrane.
    Resch K; Schneider S; Szamel M
    Biochim Biophys Acta; 1983 Aug; 733(1):142-53. PubMed ID: 6136298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver.
    Stymne S; Stobart AK
    Biochem J; 1984 Oct; 223(2):305-14. PubMed ID: 6497849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyltransferase systems involved in phospholipid metabolism in Saccharomyces cerevisiae.
    Yamada K; Okuyama H; Endo Y; Ikezawa H
    Arch Biochem Biophys; 1977 Sep; 183(1):281-9. PubMed ID: 334080
    [No Abstract]   [Full Text] [Related]  

  • 19. The kinetic properties of oleoyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase from mouse-brain microsomes.
    Wise RW; Sun GY; Macquarrie R
    Eur J Biochem; 1980 Aug; 109(1):201-6. PubMed ID: 7408877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid fatty acid modification of rat liver microsomes affects acylcoenzyme A:cholesterol acyltransferase activity.
    Mathur SN; Simon I; Lokesh BR; Spector AA
    Biochim Biophys Acta; 1983 May; 751(3):401-11. PubMed ID: 6303434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.