These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10856516)

  • 1. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery.
    Pasterkamp G; Schoneveld AH; Hijnen DJ; de Kleijn DP; Teepen H; van der Wal AC; Borst C
    Atherosclerosis; 2000 Jun; 150(2):245-53. PubMed ID: 10856516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atherosclerotic expansive remodeled plaques: a wolf in sheep's clothing.
    Pasterkamp G; Fitzgerald PF; de Kleijn DP
    J Vasc Res; 2002; 39(6):514-23. PubMed ID: 12566977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.
    Shah PK; Falk E; Badimon JJ; Fernandez-Ortiz A; Mailhac A; Villareal-Levy G; Fallon JT; Regnstrom J; Fuster V
    Circulation; 1995 Sep; 92(6):1565-9. PubMed ID: 7664441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.
    Samady H; Eshtehardi P; McDaniel MC; Suo J; Dhawan SS; Maynard C; Timmins LH; Quyyumi AA; Giddens DP
    Circulation; 2011 Aug; 124(7):779-88. PubMed ID: 21788584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Matrix metalloproteinase-1 and coronary atheroslerotic plaque rupture].
    Guo A; Wei L; Shi H; Li X; You L
    Zhonghua Bing Li Xue Za Zhi; 2000 Aug; 29(4):263-6. PubMed ID: 11866921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medial and adventitial macrophages are associated with expansive atherosclerotic remodeling in rabbit femoral artery.
    Yamashita A; Shoji K; Tsuruda T; Furukoji E; Takahashi M; Nishihira K; Tamura S; Asada Y
    Histol Histopathol; 2008 Feb; 23(2):127-36. PubMed ID: 17999368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators.
    Rajavashisth TB; Xu XP; Jovinge S; Meisel S; Xu XO; Chai NN; Fishbein MC; Kaul S; Cercek B; Sharifi B; Shah PK
    Circulation; 1999 Jun; 99(24):3103-9. PubMed ID: 10377072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Granulocytes in coronary thrombus evolution after myocardial infarction--time-dependent changes in expression of matrix metalloproteinases.
    Li X; de Boer OJ; Ploegmaker H; Teeling P; Daemen MJ; de Winter RJ; van der Wal AC
    Cardiovasc Pathol; 2016; 25(1):40-6. PubMed ID: 26490693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets.
    Jager NA; Wallis de Vries BM; Hillebrands JL; Harlaar NJ; Tio RA; Slart RH; van Dam GM; Boersma HH; Zeebregts CJ; Westra J
    Mol Imaging Biol; 2016 Apr; 18(2):283-91. PubMed ID: 26377769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs.
    Fan X; Wang E; Wang X; Cong X; Chen X
    Exp Mol Pathol; 2014 Apr; 96(2):242-9. PubMed ID: 24594117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes in proinflammatory cytokine and destructive metalloproteinase levels during formation of unstable atherosclerotic plaque].
    Ragino IuI; Cherniavskiĭ AM; Polonskaia IaV; Volkov AM; Semaeva EV; Tsymbal SIu; Voevoda MI
    Kardiologiia; 2009; 49(6):43-9. PubMed ID: 19656094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intravascular ultrasound study of coronary remodeling and determination of matrix metalloproteinase and hypersensitive C-reactive protein].
    Hui B; Dang Q; Wang XF; Jin Z; Xia DS; Gao L; Cai L; Zhang J; Xu F; Wang PX
    Zhonghua Xin Xue Guan Bing Za Zhi; 2005 May; 33(5):428-32. PubMed ID: 15932701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque.
    Yoon YW; Kwon HM; Hwang KC; Choi EY; Hong BK; Kim D; Kim HS; Cho SH; Song KS; Sangiorgi G
    Atherosclerosis; 2005 May; 180(1):37-44. PubMed ID: 15823273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between coronary artery remodeling and plaque vulnerability.
    Varnava AM; Mills PG; Davies MJ
    Circulation; 2002 Feb; 105(8):939-43. PubMed ID: 11864922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of [
    Kiugel M; Hellberg S; Käkelä M; Liljenbäck H; Saanijoki T; Li XG; Tuomela J; Knuuti J; Saraste A; Roivainen A
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30513758
    [No Abstract]   [Full Text] [Related]  

  • 16. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability.
    Müller A; Krämer SD; Meletta R; Beck K; Selivanova SV; Rancic Z; Kaufmann PA; Vos B; Meding J; Stellfeld T; Heinrich TK; Bauser M; Hütter J; Dinkelborg LM; Schibli R; Ametamey SM
    Nucl Med Biol; 2014 Aug; 41(7):562-9. PubMed ID: 24853402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues.
    Choudhary S; Higgins CL; Chen IY; Reardon M; Lawrie G; Vick GW; Karmonik C; Via DP; Morrisett JD
    Arterioscler Thromb Vasc Biol; 2006 Oct; 26(10):2351-8. PubMed ID: 16888239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical Phenotypes of Stable and Unstable Occlusive Atherosclerotic Plaques in Coronary Arteries.
    Murashov IS; Volkov AM; Kazanskaya GM; Kliver EE; Savchenko SV; Klochkova SV; Lushnikova EL
    Bull Exp Biol Med; 2018 Oct; 165(6):798-802. PubMed ID: 30353330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of NAD(P)H oxidase-derived reactive oxygen species on coronary arterial remodeling: a comparative intravascular ultrasound and histochemical analysis of atherosclerotic lesions.
    Terashima M; Ohashi Y; Azumi H; Otsui K; Kaneda H; Awano K; Kobayashi S; Honjo T; Suzuki T; Maeda K; Yokoyama M; Inoue N
    Circ Cardiovasc Interv; 2009 Jun; 2(3):196-204. PubMed ID: 20031716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of matrix metalloproteinase 9 and its regulators in the unstable coronary atherosclerotic plaque.
    Chen F; Eriksson P; Hansson GK; Herzfeld I; Klein M; Hansson LO; Valen G
    Int J Mol Med; 2005 Jan; 15(1):57-65. PubMed ID: 15583828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.