BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 10856719)

  • 1. Sphingolipid transport in eukaryotic cells.
    van Meer G; Holthuis JC
    Biochim Biophys Acta; 2000 Jun; 1486(1):145-70. PubMed ID: 10856719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organizing potential of sphingolipids in intracellular membrane transport.
    Holthuis JC; Pomorski T; Raggers RJ; Sprong H; Van Meer G
    Physiol Rev; 2001 Oct; 81(4):1689-723. PubMed ID: 11581500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular lipid heterogeneity caused by topology of synthesis and specificity in transport. Example: sphingolipids.
    van Helvoort A; van Meer G
    FEBS Lett; 1995 Aug; 369(1):18-21. PubMed ID: 7641876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent analogues of plasma membrane sphingolipids are sorted to different intracellular compartments in astrocytes; Harmful effects of chronic ethanol exposure on sphingolipid trafficking and metabolism.
    Tomás M; Durán JM; Lázaro-Diéguez F; Babià T; Renau-Piqueras J; Egea G
    FEBS Lett; 2004 Apr; 563(1-3):59-65. PubMed ID: 15063723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingolipids as modulators of membrane proteins.
    Ernst AM; Brügger B
    Biochim Biophys Acta; 2014 May; 1841(5):665-70. PubMed ID: 24201378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain.
    Contreras FX; Ernst AM; Haberkant P; Björkholm P; Lindahl E; Gönen B; Tischer C; Elofsson A; von Heijne G; Thiele C; Pepperkok R; Wieland F; Brügger B
    Nature; 2012 Jan; 481(7382):525-9. PubMed ID: 22230960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids.
    Hannun YA; Linardic CM
    Biochim Biophys Acta; 1993 Dec; 1154(3-4):223-36. PubMed ID: 8280742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingolipid transport.
    Riboni L; Giussani P; Viani P
    Adv Exp Med Biol; 2010; 688():24-45. PubMed ID: 20919644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipid trafficking and protein sorting in epithelial cells.
    Aït Slimane T; Hoekstra D
    FEBS Lett; 2002 Oct; 529(1):54-9. PubMed ID: 12354613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis.
    Quinville BM; Deschenes NM; Ryckman AE; Walia JS
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.
    Kolter T; Sandhoff K
    Annu Rev Cell Dev Biol; 2005; 21():81-103. PubMed ID: 16212488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol interactions with phospholipids in membranes.
    Ohvo-Rekilä H; Ramstedt B; Leppimäki P; Slotte JP
    Prog Lipid Res; 2002 Jan; 41(1):66-97. PubMed ID: 11694269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage diseases: new insights into sphingolipid functions.
    Sillence DJ; Platt FM
    Trends Cell Biol; 2003 Apr; 13(4):195-203. PubMed ID: 12667757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution.
    Malathi K; Higaki K; Tinkelenberg AH; Balderes DA; Almanzar-Paramio D; Wilcox LJ; Erdeniz N; Redican F; Padamsee M; Liu Y; Khan S; Alcantara F; Carstea ED; Morris JA; Sturley SL
    J Cell Biol; 2004 Feb; 164(4):547-56. PubMed ID: 14970192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of N-([1-14C]hexanoyl)-D-erythro-sphingolipids to assay sphingolipid metabolism.
    Futerman AH; Pagano RE
    Methods Enzymol; 1992; 209():437-46. PubMed ID: 1495424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond a structural component: sphingolipids in immunology.
    Prieschl EE; Baumruker T
    Arch Immunol Ther Exp (Warsz); 2000; 48(3):163-71. PubMed ID: 10912620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders.
    Piccinini M; Scandroglio F; Prioni S; Buccinnà B; Loberto N; Aureli M; Chigorno V; Lupino E; DeMarco G; Lomartire A; Rinaudo MT; Sonnino S; Prinetti A
    Mol Neurobiol; 2010 Jun; 41(2-3):314-40. PubMed ID: 20127207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sphingolipid and glycosphingolipid metabolism during neuronal growth and development.
    Futerman AH; Boldin SA; Brann AB; Pelled D; Meivar-Levy I; Zisling R
    Biochem Soc Trans; 1999 Aug; 27(4):432-7. PubMed ID: 10917616
    [No Abstract]   [Full Text] [Related]  

  • 20. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics.
    Tóth EA; Oszvald Á; Péter M; Balogh G; Osteikoetxea-Molnár A; Bozó T; Szabó-Meleg E; Nyitrai M; Derényi I; Kellermayer M; Yamaji T; Hanada K; Vígh L; Matkó J
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):991-1000. PubMed ID: 28645851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.