BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10856780)

  • 21. Lactose permease of Escherichia coli catalyzes active beta-galactoside transport in a gram-positive bacterium.
    Brabetz W; Liebl W; Schleifer KH
    J Bacteriol; 1993 Nov; 175(22):7488-91. PubMed ID: 8226697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced electrochemical measurement of β-galactosidase activity in whole cells by coexpression of lactose permease, LacY.
    VanArsdale E; Pitzer J; Wang S; Stephens K; Chen CY; Payne GF; Bentley WE
    Biotechniques; 2022 Nov; 73(5):233-237. PubMed ID: 36300351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter.
    Gödecke A; Zachariae W; Arvanitidis A; Breunig KD
    Nucleic Acids Res; 1991 Oct; 19(19):5351-8. PubMed ID: 1923819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli.
    Qoronfleh MW; Debouck C; Keller J
    J Bacteriol; 1992 Dec; 174(24):7902-9. PubMed ID: 1334067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific mutagenesis of histidine residues in the lac permease of Escherichia coli.
    Padan E; Sarkar HK; Viitanen PV; Poonian MS; Kaback HR
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6765-8. PubMed ID: 3901007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insertion of the polytopic membrane protein lactose permease occurs by multiple mechanisms.
    Zen KH; Consler TG; Kaback HR
    Biochemistry; 1995 Mar; 34(10):3430-7. PubMed ID: 7880837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport.
    Riley MI; Sreekrishna K; Bhairi S; Dickson RC
    Mol Gen Genet; 1987 Jun; 208(1-2):145-51. PubMed ID: 3039304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus.
    Kroos L; Kaiser D
    Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5816-20. PubMed ID: 6091110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity.
    Bibi E; Stearns SM; Kaback HR
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3180-4. PubMed ID: 1565610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of Escherichia coli strains containing new gene fusions (soi::lacZ) inducible by superoxide radicals.
    Mito S; Zhang QM; Yonei S
    J Bacteriol; 1993 May; 175(9):2645-51. PubMed ID: 8386722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the F plasmid traY promoter in Escherichia coli K12 as a function of sequence context.
    Silverman PM; Wickersham E; Rainwater S; Harris R
    J Mol Biol; 1991 Jul; 220(2):271-9. PubMed ID: 1906941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficiency transposon mutagenesis by electroporation of a Pseudomonas fluorescens strain.
    Artiguenave F; Vilaginès R; Danglot C
    FEMS Microbiol Lett; 1997 Aug; 153(2):363-9. PubMed ID: 9271864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. lacZ--Y+ fusions in Escherichia coli. DNA sequencing reveals the eight N-terminal residues of lac permease as non-essential.
    Bocklage H; Müller-Hill B
    Eur J Biochem; 1983 Dec; 137(3):561-5. PubMed ID: 6363062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation of Pseudomonas fluorescens to the plant rhizosphere.
    Rainey PB
    Environ Microbiol; 1999 Jun; 1(3):243-57. PubMed ID: 11207743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increase in the catalytic rate of beta-galactosidase by selection in chemostats at changing dilution rates.
    Tsen SD
    Biochem Biophys Res Commun; 1990 Feb; 166(3):1245-50. PubMed ID: 2106313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transposon Tn5 mutagenesis of pseudomonas fluorescens to isolate mutants deficient in antibacterial activity.
    Rajendran N; Jahn D; Jayaraman K; Marahiel MA
    FEMS Microbiol Lett; 1994 Jan; 115(2-3):191-6. PubMed ID: 8138133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic studies of a thermoregulated gene in the psychrotrophic bacterium Pseudomonas fluorescens.
    Regeard C; Mérieau A; Leriche F; Guespin-Michel JF
    Res Microbiol; 1999 Sep; 150(7):447-56. PubMed ID: 10540908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria.
    Bruckbauer ST; Kvitko BH; Karkhoff-Schweizer RR; Schweizer HP
    BMC Microbiol; 2015 Feb; 15(1):17. PubMed ID: 25648327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.