These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10857196)

  • 1. [The molecular genetic mapping of cereal crops].
    Kartel' NA; Malyshev SV
    Tsitol Genet; 2000; 34(2):5-10. PubMed ID: 10857196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparative molecular-genetic mapping of genomes of rye (Secale cereale L.) and other cereals].
    Malyshev SV; Korzun VN; Zaben'kova KI; Voĭlokov AV; Berner A; Kartel' NA
    Tsitol Genet; 2003; 37(5):9-20. PubMed ID: 14650323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of molecular markers in cereal breeding.
    Korzun V
    Cell Mol Biol Lett; 2002; 7(2B):811-20. PubMed ID: 12378242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic colinearity as a tool for plant gene isolation.
    Ramakrishna W; Bennetzen JL
    Methods Mol Biol; 2003; 236():109-22. PubMed ID: 14501061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat.
    Dvorak J; Akhunov ED; Akhunov AR; Deal KR; Luo MC
    Mol Biol Evol; 2006 Jul; 23(7):1386-96. PubMed ID: 16675504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in cereal genomics and applications in crop breeding.
    Varshney RK; Hoisington DA; Tyagi AK
    Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCR analysis of half-seeds of cereal crops and its application in marker-assisted selection and breeding.
    Zhai W; Lu C; Zhu L; Yang W; Zhang Q
    Chin J Biotechnol; 1996; 12(4):249-55. PubMed ID: 9187497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Molecular mapping of the fertility restorer gene Rf-4 for WA cytoplasmic male sterility in rice].
    Zhang QY; Liu YG; Zhang GQ; Mei MT
    Yi Chuan Xue Bao; 2002; 29(11):1001-4. PubMed ID: 12645264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species.
    Varshney RK; Thiel T; Stein N; Langridge P; Graner A
    Cell Mol Biol Lett; 2002; 7(2A):537-46. PubMed ID: 12378259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication-related genes in various landraces and modern cultivars.
    Konishi S; Ebana K; Izawa T
    Plant Cell Physiol; 2008 Sep; 49(9):1283-93. PubMed ID: 18701522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R.
    Bartos J; Paux E; Kofler R; Havránková M; Kopecký D; Suchánková P; Safár J; Simková H; Town CD; Lelley T; Feuillet C; Dolezel J
    BMC Plant Biol; 2008 Sep; 8():95. PubMed ID: 18803819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The genetic polymorphism of cereals demonstrated by PCR with random primers].
    Sivolap IuM; Kalendar' RN; Chebotar' SV
    Tsitol Genet; 1994; 28(6):54-61. PubMed ID: 7701604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice.
    Ramalingam J; Vera Cruz CM; Kukreja K; Chittoor JM; Wu JL; Lee SW; Baraoidan M; George ML; Cohen MB; Hulbert SH; Leach JE; Leung H
    Mol Plant Microbe Interact; 2003 Jan; 16(1):14-24. PubMed ID: 12580278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology: a modified method for high-quality DNA extraction for molecular analysis in cereal plants.
    Pervaiz ZH; Turi NA; Khaliq I; Rabbani MA; Malik SA
    Genet Mol Res; 2011; 10(3):1669-73. PubMed ID: 21863559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A.
    Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS
    Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Identification of maize genotypes by PCR analysis].
    Sivolap IuM; Trebel'skiĭ DIu
    Tsitol Genet; 2001; 35(3):14-21. PubMed ID: 11785427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct chromosome mapping of plant genes by in situ polymerase chain reaction (in situ PCR).
    Mukai Y; Appels R
    Chromosome Res; 1996 Aug; 4(5):401-4. PubMed ID: 8871831
    [No Abstract]   [Full Text] [Related]  

  • 18. In-depth view of structure, activity, and evolution of rice chromosome 10.
    Rice Chromosome 10 Sequencing Consortium
    Science; 2003 Jun; 300(5625):1566-9. PubMed ID: 12791992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput S-SAP by fluorescent multiplex PCR and capillary electrophoresis in plants.
    Tang T; Huang J; Zhong Y; Shi S
    J Biotechnol; 2004 Oct; 114(1-2):59-68. PubMed ID: 15464599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general pipeline for the development of anchor markers for comparative genomics in plants.
    Fredslund J; Madsen LH; Hougaard BK; Nielsen AM; Bertioli D; Sandal N; Stougaard J; Schauser L
    BMC Genomics; 2006 Aug; 7():207. PubMed ID: 16907970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.