BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10857369)

  • 1. Autofluorescence patterns in short-term cultures of normal cervical tissue.
    Brookner CK; Follen M; Boiko I; Galvan J; Thomsen S; Malpica A; Suzuki S; Lotan R; Richards-Kortum R
    Photochem Photobiol; 2000 Jun; 71(6):730-6. PubMed ID: 10857369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy.
    Pavlova I; Sokolov K; Drezek R; Malpica A; Follen M; Richards-Kortum R
    Photochem Photobiol; 2003 May; 77(5):550-5. PubMed ID: 12812299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia.
    Drezek R; Brookner C; Pavlova I; Boiko I; Malpica A; Lotan R; Follen M; Richards-Kortum R
    Photochem Photobiol; 2001 Jun; 73(6):636-41. PubMed ID: 11421069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing cell metabolism by time-resolved autofluorescence.
    Wu Y; Zheng W; Qu JY
    Opt Lett; 2006 Nov; 31(21):3122-4. PubMed ID: 17041655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence characterisation of isolated whole crypts and primary cultured human epithelial cells from normal, hyperplastic, and adenomatous colonic mucosa.
    DaCosta RS; Andersson H; Cirocco M; Marcon NE; Wilson BC
    J Clin Pathol; 2005 Jul; 58(7):766-74. PubMed ID: 15976349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements.
    Chang SK; Arifler D; Drezek R; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):511-22. PubMed ID: 15189089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofluorescence spectroscopy of malpighian epithelial cells, as a new tool for analysis of cervical cancer precursors.
    Millot C; Bondza-Kibangou P; Millot JM; Lallemand A; Manfait M
    Histol Histopathol; 2003 Apr; 18(2):479-85. PubMed ID: 12647799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the fluorescence properties of normal and neoplastic human cervical tissue.
    Mahadevan A; Mitchell MF; Silva E; Thomsen S; Richards-Kortum RR
    Lasers Surg Med; 1993; 13(6):647-55. PubMed ID: 8295474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence spectroscopy of the cervix: influence of acetic acid, cervical mucus, and vaginal medications.
    Agrawal A; Utzinger U; Brookner C; Pitris C; Mitchell MF; Richards-Kortum R
    Lasers Surg Med; 1999; 25(3):237-49. PubMed ID: 10495301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
    Shao X; Zheng W; Huang Z
    J Biomed Opt; 2011 Jun; 16(6):067005. PubMed ID: 21721826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between collagen autofluorescence of the human cervix and menopausal status.
    Gill EM; Malpica A; Alford RE; Nath AR; Follen M; Richards-Kortum RR; Ramanujam N
    Photochem Photobiol; 2003 Jun; 77(6):653-8. PubMed ID: 12870852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid.
    Karadaglić D; Wood AD; McRobbie M; Stojanović R; Herrington CS
    Cancer Epidemiol; 2009 Dec; 33(6):463-8. PubMed ID: 19926356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Mueller matrix fluorescence spectroscopy for precancer detection.
    Jagtap J; Chandel S; Das N; Soni J; Chatterjee S; Pradhan A; Ghosh N
    Opt Lett; 2014 Jan; 39(2):243-6. PubMed ID: 24562117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectroscopy of an in vitro model of human cervical precancer identifies neoplastic phenotype.
    Martin SF; Wood AD; McRobbie MM; Mazilu M; McDonald MP; Samuel ID; Herrington CS
    Int J Cancer; 2007 May; 120(9):1964-70. PubMed ID: 17266040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-visual prescreening of cervical smears with a flow-through cytophotometer.
    Freni SC
    Acta Cytol; 1975; 19(5):448-52. PubMed ID: 1058617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia.
    Heintzelman DL; Lotan R; Richards-Kortum RR
    Photochem Photobiol; 2000 Mar; 71(3):327-32. PubMed ID: 10732451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrometric measurement in laryngeal cancer.
    Arens C; Reussner D; Neubacher H; Woenckhaus J; Glanz H
    Eur Arch Otorhinolaryngol; 2006 Nov; 263(11):1001-7. PubMed ID: 16944236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectroscopy as a diagnostic tool for detecting cervical pre-cancer.
    Chang SK; Pavlova I; Marín NM; Follen M; Richards-Kortum R
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S61-3. PubMed ID: 16419187
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.