These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10857579)

  • 1. Tissue structure study through ultrasonic forward scattering.
    Edee MK
    Ultrasonics; 2000 May; 37(9):645-56. PubMed ID: 10857579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating localized oscillatory tissue motion for assessment of the underlying mechanical modulus.
    Konofagou EE; Ottensmeyer M; Agabian S; Dawson SL; Hynynen K
    Ultrasonics; 2004 Apr; 42(1-9):951-6. PubMed ID: 15047412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spectral approach to ultrasonic scattering from human tissue: methods, objectives and backscattering measurements.
    Chivers RC; Hill CR
    Phys Med Biol; 1975 Sep; 20(3):799-815. PubMed ID: 1187780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic measurement of sound velocity fluctuations in biological tissue due to ultrasonic heating and estimation of thermo-physical properties.
    Tsujimoto Y; Morimoto M; Nitta N; Akiyama I
    J Med Ultrason (2001); 2019 Jan; 46(1):35-43. PubMed ID: 30443690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of ultrasonic backscattering microstructure feature of human spleen based on "WD cepstrum"].
    Ta D; Liu Z; Chen Q; Min Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):440-3. PubMed ID: 11211835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue characterization of arteries with 4 MHz ultrasound.
    Tobocman W; Santosh K; Carter JR; Haacke EM
    Ultrasonics; 1995 Jul; 33(4):331-40. PubMed ID: 7491740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral estimation for characterization of acoustic aberration.
    Varslot T; Angelsen B; Waag RC
    J Acoust Soc Am; 2004 Jul; 116(1):97-108. PubMed ID: 15295969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens.
    Pereira WC; Bridal SL; Coron A; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):302-12. PubMed ID: 15128217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency ultrasound imaging and simulations of sea urchin oocytes.
    Strohm EM; Wirtzfeld LA; Czarnota GJ; Kolios MC
    J Acoust Soc Am; 2017 Jul; 142(1):268. PubMed ID: 28764480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of spectra of pulses from ultrasonic transducers by scatters in non-attenuating and in attenuating media.
    Round WH; Bates RH
    Ultrason Imaging; 1987 Jan; 9(1):18-28. PubMed ID: 3603895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect characterization using an ultrasonic array to measure the scattering coefficient matrix.
    Zhang J; Drinkwater BW; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2254-65. PubMed ID: 18986873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.
    Oelze ML; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1202-11. PubMed ID: 12243165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical framework for spectrum analysis in ultrasonic tissue characterization.
    Lizzi FL; Greenebaum M; Feleppa EJ; Elbaum M; Coleman DJ
    J Acoust Soc Am; 1983 Apr; 73(4):1366-73. PubMed ID: 6853848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.
    Whiteside PJD; Qian C; Golda N; Hunt HK
    Lasers Surg Med; 2017 Sep; 49(7):666-674. PubMed ID: 28418076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative ultrasonic tissue characterization can identify high-risk atherosclerotic alteration in human carotid arteries.
    Takiuchi S; Rakugi H; Honda K; Masuyama T; Hirata N; Ito H; Sugimoto K; Yanagitani Y; Moriguchi K; Okamura A; Higaki J; Ogihara T
    Circulation; 2000 Aug; 102(7):766-70. PubMed ID: 10942745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of frequency dependence of backscatter coefficient in normal and atherosclerotic aortic walls.
    Landini L; Sarnelli R; Picano E; Salvadori M
    Ultrasound Med Biol; 1986 May; 12(5):397-401. PubMed ID: 3521030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microprocessor-base system for ultrasonic tissue characterization.
    Bhagat PK; Kadaba MP; Gupta VN; Wu V
    Med Instrum; 1980; 14(4):220-4. PubMed ID: 7412654
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.